首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2399篇
  免费   409篇
  国内免费   661篇
测绘学   158篇
大气科学   352篇
地球物理   450篇
地质学   1575篇
海洋学   307篇
天文学   128篇
综合类   154篇
自然地理   345篇
  2024年   14篇
  2023年   59篇
  2022年   85篇
  2021年   117篇
  2020年   125篇
  2019年   137篇
  2018年   91篇
  2017年   98篇
  2016年   121篇
  2015年   115篇
  2014年   157篇
  2013年   152篇
  2012年   135篇
  2011年   134篇
  2010年   123篇
  2009年   149篇
  2008年   143篇
  2007年   156篇
  2006年   140篇
  2005年   146篇
  2004年   121篇
  2003年   98篇
  2002年   110篇
  2001年   89篇
  2000年   100篇
  1999年   88篇
  1998年   65篇
  1997年   58篇
  1996年   62篇
  1995年   46篇
  1994年   38篇
  1993年   35篇
  1992年   41篇
  1991年   29篇
  1990年   26篇
  1989年   21篇
  1988年   18篇
  1987年   5篇
  1986年   7篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1978年   1篇
排序方式: 共有3469条查询结果,搜索用时 15 毫秒
41.
金刚石工具富铁胎体掺杂稀土的研究   总被引:5,自引:0,他引:5  
稀土的加入量、加入形态和在混料中的均匀弥散性直接影响热压富铁金刚石复合材料的性能。改进的稀土掺杂工艺,保证了稀土在胎体中的均匀弥散性;通过试验研究了稀土的加入量与富铁胎体的抗弯强度、抗冲击韧性和孔隙率的关系,从而确定了稀土的最优加入量。通过差热分析试验,认为稀土可以改变富铁胎体的热物理特性。  相似文献   
42.
冻融作用对地气系统能量交换的影响分析   总被引:7,自引:12,他引:7  
李述训  南卓铜  赵林 《冰川冻土》2002,24(5):506-511
通过对温度波在地层内传播过程问题的分析研究, 讨论土在冻结和融化过程对地气系统能量交换的影响, 并以亚粘土为例应用近似方法计算了在冻结和融化过程地气系统能量交换和地温变化特征, 同时将相同条件下发生冻融作用与不发生冻融作用情况地气系统热交换量进行了比较. 结果表明, 冻融作用使地气系统热交换加强, 同时吸热和放热的过程也发生了改变.  相似文献   
43.
对煤系高岭石进行0-2h的研磨之后,再在900℃、1000℃、1400℃的温度条件下分别对其加热1h,然后利用X射线衍射(XRD)、差热分析(DTA)、红外光谱(IR)等手段,研究机械研磨对于煤系高岭石晶体结构的破坏作用以及对其热行为的影响。结果显示,煤系高岭石被研磨1h之后,高岭石的晶体结构几乎全部跨塌。把研磨1h的煤系高岭石加热到1000℃(加热1h),便能形成结晶良好的莫来石。  相似文献   
44.
High‐T, low‐P metamorphic rocks of the Palaeoproterozoic central Halls Creek Orogen in northern Australia are characterised by low radiogenic heat production, high upper crustal thermal gradients (locally exceeding 40 °C km?1) sustained for over 30 Myr, and a large number of layered mafic‐ultramafic intrusions with mantle‐related geochemical signatures. In order to account for this combination of geological and thermal characteristics, we model the middle crustal response to a transient mantle‐related heat pulse resulting from a temporary reduction in the thickness of the mantle lithosphere. This mechanism has the potential to raise mid‐crustal temperatures by 150–400 °C within 10–20 Myr following initiation of the mantle temperature anomaly, via conductive dissipation through the crust. The magnitude and timing of maximum temperatures attained depend strongly on the proximity, duration and lateral extent of the thermal anomaly in the mantle lithosphere, and decrease sharply in response to anomalies that are seated deeper than 50–60 km, maintained for <5 Myr in duration and/or have half‐widths <100 km. Maximum temperatures are also intimately linked to the thermal properties of the model crust, primarily due to their influence on the steady‐state (background) thermal gradient. The amplitudes of temperature increases in the crust are principally a function of depth, and are broadly independent of crustal thermal parameters. Mid‐crustal felsic and mafic plutonism is a predictable consequence of perturbed thermal regimes in the mantle and the lowermost crust, and the advection of voluminous magmas has the potential to raise temperatures in the middle crust very quickly. Although pluton‐related thermal signatures significantly dissipate within <10 Myr (even for very large, high‐temperature intrusive bodies), the interaction of pluton‐ and mantle‐related thermal effects has the potential to maintain host rock temperatures in excess of 400–450 °C for up to 30 Myr in some parts of the mid‐crust. The numerical models presented here support the notion that transient mantle‐related heat sources have the capacity to contribute significantly to the thermal budget of metamorphism in high‐T, low‐P metamorphic belts, especially in those characterised by low surface heat flow, very high peak metamorphic geothermal gradients and abundant mafic intrusions.  相似文献   
45.
In the Archaean Pilbara Craton of Western Australia, three zones of heterogeneous centimetre- to metre-scale sheeted granites are interpreted to represent high-level, syn-magmatic shear zones. Evidence for the syn-magmatic nature of the shear zones include imbricated and asymmetrically rotated metre-scale orthogneiss xenoliths that are enveloped by leucogranite sheets that show no significant internal strain. At another locality, granite sheets have a strong shape-preferred alignment of K-feldspar, suggesting magmatic flow, while the asymmetric recrystallisation of the grain boundaries indicates that non-coaxial deformation continued acting upon the sheets under sub-solidus conditions. Elsewhere, randomly oriented centimetre-wide leucogranite dykes are realigned at a shear zone boundary to form semi-continuous, layer-parallel sheets within a magma-dominated, dextral shear zone.

It is proposed that the granite sheets formed by the incremental injection of magmas into active shear zones. Magma was sheared during laminar flow to produce the sheets that are aligned sub-parallel to the shear zone boundary. Individual sheets are fed by individual dykes, with up to 1000s of discrete injections in an individual shear zone. The sheets often lack microstructural evidence for magmatic flow, either because the crystal content of the magma was too low to record internal strain, or because of later recrystallisation.  相似文献   

46.
Thermal waters hosted by Menderes metamorphic rocks emerge along fault lineaments in the Simav geothermal area. Thermal springs and drilled wells are located in the Eynal, Çitgöl and Na a locations, which are part of the Simav geothermal field. Studies were carried out to obtain the main chemical and physical characteristics of thermal waters. These waters are used for heating of residences and greenhouses and for balneological purposes. Bottom temperatures of the drilled wells reach 163°C with total dissolved solids around 2225 mg/kg. Surface temperatures of thermal springs vary between 51°C and 90°C. All the thermal waters belong to Na–HCO3–SO4 facies. The cold groundwaters are Ca–Mg–HCO3 type. Dissolution of host rock and ion-exchange reactions in the reservoir of the geothermal system shift the Ca–Mg–HCO3 type cold groundwaters to the Na–HCO3–SO4 type thermal waters. Thermal waters are oversaturated at discharge temperatures for aragonite, calcite, quartz, chalcedony, magnesite and dolomite minerals giving rise to a carbonate-rich scale. Gypsum and anhydrite minerals are undersaturated with all of the thermal waters. Boiling during ascent of the thermal fluids produces steam and liquid waters resulting in an increase of the concentrations of the constituents in discharge waters. Steam fraction, y, of the thermal waters of which temperatures are above 100°C is between 0.075 and 0.119. Reservoir pH is much lower than pH measured in the liquid phase separated at atmospheric conditions, since the latter experienced heavy loss of acid gases, mainly CO2. Assessment of the various empirical chemical geothermometers and geochemical modelling suggest that reservoir temperatures vary between 175°C and 200°C.  相似文献   
47.
In this study, representative samples from thermal wells and springs were chemically analyzed and geothermometers were used to calculate the deep temperatures of geothermal reservoirs on the basis of water–mineral equilibrium. In some cases, however, the chemical components are not in equilibrium with the minerals in the reservoir. Therefore, log(Q/K) diagrams are used to study the chemical equilibrium for the minerals that are likely to participate. The Na–K–Mg triangular diagram is also applied to evaluate the equilibrium of water with reservoir rocks. Standard curves at the reference temperatures are prepared to reveal which type of silica geothermometer is appropriate for the specified condition. This study shows that water samples from geothermal wells W9 and W12 are in equilibrium with the selective minerals, and chalcedony may control the fluid–silica equilibrium. It is estimated that there is an exploitable low-temperature reservoir with possible temperatures of 80–90°C in the Guanzhong basin.  相似文献   
48.
To develop indicator–based management tools that can facilitate sustainable natural resource management by non–specialists, meaningful participation of stakeholders is essential. A participatory framework is proposed for the identification, evaluation and selection of rangeland condition indicators. This framework is applied to the assessment of rangeland degradation processes and sustainable natural resource management with pastoralists in the southern Kalahari, Botswana. Farmer knowledge focused on vegetation and livestock, with soil, wild animal and socio–economic indicators playing a lesser role. Most were indicators of current rangeland condition; however 'early warning' indicators were also identified by some key informants. This demonstrates that some local knowledge is process–based. Such knowledge could be used to improve indicator–based management tools and extension advice on the livelihood adaptations necessary to prevent or reduce ecological change, capable of threatening livelihood sustainability. There is evidence that social background influences indicator use. Communal farmers rely most heavily on vegetation and livestock indicators, whilst syndicate and land–owning pastoralists cite wild animal and soil–based indicators most frequently. These factors must be considered if indicator–based management tools are to meet the requirements of a diverse community.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号