首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   18篇
  国内免费   44篇
地球物理   28篇
地质学   130篇
天文学   1篇
自然地理   7篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   9篇
  2020年   9篇
  2019年   8篇
  2018年   4篇
  2017年   7篇
  2016年   9篇
  2015年   4篇
  2014年   7篇
  2013年   16篇
  2012年   4篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   9篇
  2007年   11篇
  2006年   10篇
  2005年   8篇
  2004年   3篇
  2003年   2篇
  2002年   7篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1995年   2篇
  1993年   2篇
  1954年   1篇
排序方式: 共有166条查询结果,搜索用时 281 毫秒
101.
本文通过峨眉山基底卷入构造带低温热年代学(磷灰石和锆石裂变径迹、锆石(U-Th)/He)研究,结合典型构造-热结构特征诠释峨眉山晚中-新生代冲断扩展变形与热年代学耦合性.峨眉山磷灰石裂变径迹(AFT)和锆石(U-Th)/He(ZHe)年龄值分别为4~30Ma和16~118Ma.ZHe年龄与海拔高程关系揭示出ZHe系统抬升剥蚀残存的部分滞留带(PRZ).低温热年代学年龄与峨眉山构造分带性具有明显相关性特征:万年寺逆断层上盘基底卷入构造带AFT年龄普遍小于10Ma,万年寺逆断层下盘扩展变形带AFT年龄普遍大于10 Ma;且空间上AFT年龄与断裂带具有明显相关性,它揭示出峨眉山扩展变形带中新世晚期以来断层冲断缩短构造活动.低温热年代学热史模拟揭示峨眉山构造带晚白垩世以来的多阶段性加速抬升剥蚀过程,基底卷入构造带岩石隆升幅度大约达到7~8km,渐新世以来抬升剥蚀速率达0.2~0.4mm·a-1,其新生代多阶段性构造隆升动力学与青藏高原多板块间碰撞过程及其始新世大规模物质东向扩展过程密切相关.  相似文献   
102.
103.
K-feldspar from the late Miocene Capoas Granite on Palawan in The Philippines appears to contain highly retentive diffusion domains that are closed to argon diffusion at near-solidus temperatures during cooling of this ~7 km-diameter pluton. This is an important result, for K-feldspar is commonly considered not retentive in terms of its ability to retain argon. Closure temperatures for argon diffusion in K-feldspars are routinely claimed to be in the range ~150–400°C but the release of 39Ar from irradiated K-feldspar during furnace step-heating experiments in vacuo yields Arrhenius data that imply the existence of highly retentive core domains, with inferred closure temperatures that can exceed ~500–700°C. These high closure temperatures from the Capoas Granite K-feldspar are consistent with the coincidence of 40Ar/39Ar ages with U–Pb zircon ages at ca 13.5 ± 0.2 Ma. The cooling rate then accelerated, but the rate of change had considerably slowed by ca 12 Ma. Low-temperature (U–Th)/He thermochronology shows that the cooling rate once again accelerated at ca 11 Ma, perhaps owing to renewed tectonic activity.  相似文献   
104.
曹凯  王国灿 《地学前缘》2011,18(6):347-357
热年代学的年龄温度法和年龄高程法是研究造山带长期构造演化过程的常用方法。相对于年龄温度法而言,年龄高程法在计算岩石剥露速率上的优势在于回避了地温梯度的假设,但前提条件中最重要的方面则要求地温梯度达到稳定状态。然而,地温场通常会受到地形变化、地表剥露速率、断层活动及岩浆侵入等作用的干扰,导致地温梯度处于非稳定状态。此时,...  相似文献   
105.
Abstract Portions of three Proterozoic tectonostratigraphic sequences are exposed in the Cimarron Mountains of New Mexico. The Cimarron River tectonic unit has affinities to a convergent margin plutonic/volcanic complex. Igneous hornblende from a quartz diorite stock records an emplacement pressure of 2–2.6 kbar. Rocks within this unit were subsequently deformed during a greenschist facies regional metamorphism at 4–5 kbar and 330 ± 50° C. The Tolby Meadow tectonic unit consists of quartzite and schist. Mineral assemblages are indicative of regional metamorphism at pressures near 4 kbar and temperatures of 520 ± 20° C. A low-angle ductile shear zone separates this succession from gneisses of the structurally underlying Eagle Nest tectonic unit. Gneissic granite yields hornblende pressures of 6–8 kbar. Pelitic gneiss records regional metamorphic conditions of 6–7 kbar and 705 ± 15° C, overprinted by retrogression at 4 kbar and 530 ± 10° C. Comparison of metamorphic and retrograde conditions indicates a P–T path dominated by decompression and cooling. The low-angle ductile shear zone represents an extensional structure which was active during metamorphism. This extension juxtaposed the Tolby Meadow and Eagle Nest units at 4 kbar and 520° C. Both units were later overprinted by folding and low-grade metamorphism, and then were emplaced against the Cimarron River tectonic unit by right-slip movement along the steeply dipping Fowler Pass shear zone. An argon isotope-correlation age obtained from igneous hornblende dates plutonism in the Cimarron River unit at 1678 Ma. Muscovite associated with the greenschist facies metamorphic overprint yields a 40 Ar/39 Ar plateau age of 1350 Ma. By contrast, rocks within the Tolby Meadow and Eagle Nest units yield significantly younger argon cooling ages. Hornblende isotope-correlation ages of 1394–1398 Ma are interpreted to date cooling during middle Proterozoic extension. Muscovite plateau ages of 1267–1257 Ma appear to date cooling from the low-grade metamorphic overprint. The latest ductile movement along the Fowler Pass shear zone post-dated these cooling ages. Argon released from muscovites of the Eagle Nest/Tolby Meadow composite unit, at low experimental temperatures, yields apparent ages of c. 1100 Ma. Similar ages are not obtained north-east of the Fowler Pass shear zone, suggesting movement more recently than 1100 Ma.  相似文献   
106.
The Alps are representing the most prominent topographic feature of central Europe in the last 30 Million years. Integration of sediment budget and thermochronological data show that crustal blocks within the Swiss and Eastern Alps experienced differential erosion and uplift, with eastward decreasing rates. Since 30 Ma, in the course of collision and slab breakoff, the Swiss and western Eastern Alps were uplifted and formed a mountain range. Moderate erosion rates stabilized  2 Myr later after adaption to the new base level. Between 28 Ma and 5 Ma, erosion rates shifted above and below different regional mean levels. These shifts of erosion rates were governed by changes of the tectonic setting. Moderate temporary drops of erosion rates and lowering of topography occurred at  21 Ma and  15 Ma in the course of lateral extension. Temporary rises occurred between 24 and 22 Ma during thrust loading and between 18 and 16 Ma during axial updoming of core complexes. By 5 Ma, a sustainable strong increase of erosion rates occurred in the Swiss and Western Alps. A much weaker increase is detected in the Eastern Alps somewhat later, which makes a tectonic trigger, probably a 2nd slab breakoff, more reasonable than a climatic trigger. However, this controversial 5-Ma event is superimposed by accelerated erosion after 2.7 Ma, governed by the onset of cyclic glaciations. Effective valley incision and sediment evacuation by glacial erosion caused isostatic compensation and pronounced young uplift of the Alps.The post-Eocene paleotopographic evolution of key areas is indirectly assessed on the base of erosion rates. Spatial change of paleotopography of the Alps and central Europe is estimated and illustrated in 3 paleogeographic maps.  相似文献   
107.
磷灰石裂变径迹热年代学研究的进展与展望   总被引:9,自引:1,他引:8  
综述了磷灰石裂变径迹热年代学研究在退火模型及模拟方法、造山带及造山后剥露历史、构造热成像及地形演变和成矿作用等方面的一些理论和应用成果,分析了目前在磷灰石裂变径迹退火机理、数据解释和应用等方面研究中存在的主要问题,指出了磷灰石裂变径迹热年代学研究今后会朝着深层次退火机理、新的应用领域、自动化技术和可操作性等方向发展.  相似文献   
108.
ABSTRACT

The West Junggar Metallogenic Belt (WJMB) is located between the Tianshan fault system and the Ertix fault system in the western part of the Central Asian Metallogenic Domain (CAMD). The belt features widespread late Palaeozoic granitic plutons, strike-slip faults, and porphyry copper and orogenic gold deposits. We collected nine molybdenite samples from the Baogutu III–IV Cu–Mo deposit and the Suyunhe Mo–W deposit, and 12 granitoid samples from the Jiaman, Kangde, Kulumusu, Bieluagaxi, Hatu, Akbastau, Miaoergou, Baogutu, Karamay, and Hongshan plutons in the WJMB. Molybdenite Re–Os dating gives metallogenesis ages of 312.7 and 299.7 Ma for the Baogutu III–IV and Suyunhe deposits, respectively. 40Ar/39Ar thermochronology yields biotite ages ranging from 326 to 302 Ma and K-feldspar ages from 297 to 264 Ma, indicating a regional medium-temperature cooling history in the WJMB during the late Carboniferous to middle Permian. By integrating these data with previous zircon U–Pb, amphibole 40Ar/39Ar, and zircon and apatite fission-track ages, we reconstruct the whole thermal history of the WJMB, which includes late Palaeozoic intrusive magmatism, porphyry Cu and W–Mo mineralization, and late Mesozoic tectonic uplift and exhumation of the WJMB. The regional 40Ar/39Ar cooling ages are consistent with the timing of regional sinistral strike-slip faulting, thereby indicating the tectonic significance of the cooling ages. We suggest that the biotite 40Ar/39Ar ages represent the static cooling of the granitic plutons after emplacement, since the ages are consistent with the U–Pb ages of the plutons. Thereafter, the oldest K-feldspar 40Ar/39Ar age may record the initiation of sinistral strike-slip movement on the Darabut, Mayile, and Baerluke faults. The regional faulting resulted in significant uplift of the WJMB during the early and middle Permian.  相似文献   
109.
Tongnanba anticline lies in the northeastern Sichuan Basin and experienced multi-stages tectonic compression and superimposition since the Middle Triassic. Its formation and evolution process are chiefly controlled by the squeezing and thrusting from the Micangshan structure belt from NW to SE and subjected to the tectonic superimposition from the Dabashan structure belt from NE to SW. Therefore, to confine the timing of Tongnanba anticline multi-stages deformation is of great effectiveness to constrain the timing of Micangshan intra-continental deformation since the Middle Triassic, and also provides significant indications to the regional tectonic time-space sequence and Micangshan basement-involved thrusting characteristics. In this paper, the anticline's south limb rotating growth strata within the Middle-Upper Jurassic, based on interpretation of two geological section, is featured, indicating that the folding of the strata started around the late Middle Jurassic-Early Late Jurassic and together with the interpretation of long seismic profile, we believe that basement-involved wedge-thrusting structure style is developed in Micangshan structure belt and the basin-ward movement of the displacement of the wedge tip along the Pre-sinian detachment layer results in the formation of the NE structure of Tongnanba anticline. Apatite fission track thermal simulation indicates that Tongnanba anticline started experiencing rapid uplifting and denudation in the early Late Cretaceous (95-90 Ma) and the Middle-Late Cenozoic (about 24 Ma) with uplift speed 0.06-0.085 mm/a and around 0.133 mm/a respectively. Through the summary of regional historical low temperature thermochronology data, geographical partition based tectonic time-space sequence is established, suggesting that northeastern Sichuan Basin experienced N-S basin-ward tectonic spreading from Micangshan structure belt and NE-SW tectonic super imposition from Dabashan structure belt during the Middle-Late Jurassic, Cretaceous and Eocene-Miocene respectively. © 2017, Science Press. All right reserved.  相似文献   
110.
<正>Does Cenozoic exhumation occur in the Larsemann Hills,East Antarctica? In the present paper,we conducted an apatite fission-track thermochronologic study across the Larsemann Hills of East Antarctica.Our work reveals a Cenozoic exhumation event at 49.8±12 Ma,which we interpret to be a result of exhumation caused by crustal extension.Within the uncertainty of our age determination, the timing of extension in East Antarctica determined by our study is coeval with the onset time of rifting in West Antarctica at c.55 Ma.The apatite fission-track cooling ages vary systematically in space, indicating a coherent block rotation of the Larsemann Hills region from c.50 Ma to c.10 Ma.This pattern of block tilting was locally disrupted by normal faulting along the Larsemann Hills detachment fault at c.5.4 Ma.The regional extension in the Larsemann Hills,East Antarctica was the result of tectonic evolution in this area,and may be related to the global extension.Through the discussion of Pan-Gondwanaland movement,and Mesozoic and Cenozoic extensions in West and East Antarctica and adjacent areas,we suggest that the protracted Cenozoic cooling over the Larsemann Hills area was caused by extensional tectonics related to separation and formation of the India Ocean at the time of Gondwanaland breakup.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号