首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   11篇
  国内免费   13篇
测绘学   31篇
大气科学   2篇
地球物理   27篇
地质学   128篇
海洋学   9篇
综合类   13篇
自然地理   26篇
  2023年   1篇
  2022年   1篇
  2020年   4篇
  2019年   6篇
  2018年   2篇
  2017年   6篇
  2016年   7篇
  2015年   6篇
  2014年   6篇
  2013年   15篇
  2012年   14篇
  2011年   11篇
  2010年   3篇
  2009年   11篇
  2008年   14篇
  2007年   11篇
  2006年   4篇
  2005年   4篇
  2004年   8篇
  2003年   8篇
  2002年   8篇
  2001年   9篇
  2000年   5篇
  1999年   6篇
  1998年   9篇
  1997年   10篇
  1996年   1篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   7篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1982年   3篇
  1980年   3篇
  1979年   1篇
排序方式: 共有236条查询结果,搜索用时 31 毫秒
21.
Temporal and spatial rainfall patterns were analysed to describe the distribution of daily rainfall across a medium‐sized (379km2) tropical catchment. Investigations were carried out to assess whether a climatological variogram model was appropriate for mapping rainfall taking into consideration the changing rainfall characteristics through the wet season. Exploratory, frequency and moving average analyses of 30 years' daily precipitation data were used to describe the reliability and structure of the rainfall regime. Four phases in the wet season were distinguished, with the peak period (mid‐August to mid‐September) representing the wettest period. A low‐cost rain gauge network of 36 plastic gauges with overflow reservoirs was installed and monitored to obtain spatially distributed rainfall data. Geostatistical techniques were used to develop global and wet season phase climatological variograms. The unscaled climatological variograms were cross‐validated and compared using a range of rainfall events. Ordinary Kriging was used as the interpolation method. The global climatological variogram performed better, and was used to optimize the number and location of rain gauges in the network. The research showed that although distinct wet season phases could be established based on the temporal analysis of daily rainfall characteristics, the interpolation of daily rainfall across a medium‐sized catchment based on spatial analysis was better served by using the global rather than the wet season phase climatological variogram model. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
22.
Fuzzy Modeling for Reserve Estimation Based on Spatial Variability   总被引:1,自引:0,他引:1  
This article addresses a new reserve estimation method which uses fuzzy modeling algorithms and estimates the reserve parameters based on spatial variability. The proposed fuzzy modeling approach has three stages: (1) Structure identification and preliminary clustering, (2) Variogram analysis, and (3) Clustering based rule system. A new clustering index approach and a new spatial measure function (point semimadogram) are proposed in the paper. The developed methodology uses spatial variability in each step and takes the fuzzy rules from input-output data. The model has been tested using both simulated and real data sets. The performance evaluation indicates that the new methodology can be applied in reserve estimation and similar modeling problems  相似文献   
23.
Georges Matheron (1930–2000) and John Tukey (1915–2000) were among the most prominent mathematical statisticians of the 20th century. Both men produced numerous important new theoretical and practical results. This personal appreciation of their work concentrates on contributions to mineral-resources research and describes their influence on my work in mineral-resource evaluation studies at the Geological Survey of Canada (1966–1983).  相似文献   
24.
Common variogram models, such as spherical or exponential functions, increase monotonically with increasing lag distance. On the other hand, a hole-effect variogram typically exhibits sinusoidal waves that form peaks and troughs, thereby conveying the cyclicity of the underlying phenomenon. In order to incorporate this cyclicity into a stochastic simulation, hole effects in the experimental variogram must be fitted appropriately. In this paper, we recommend use of several multiplicative-composite variogram models to fit hole-effect experimental variograms. These consist of a cosine function to provide wavelength and phase of cyclicity, multiplied by a monotonic model (e.g., spherical) to attenuate amplitudes of the cyclical peaks and troughs. These composite models can successfully fit experimental lithology-indicator variograms that contain a range of cyclicities, although experimental variograms with poor cyclicity require special considerations.  相似文献   
25.
叠加地球化学场表现为各地球化学元素的变差函数具有双重套合结构。拟合实验交差函数是分解叠加地球化学场的关键。本文依据地球化学场自相关与自相似的内在联系,提出用多标度分形谐方法拟合具有二级套合结构的实验交差函数。  相似文献   
26.
The relative variogram has been employed as a tool for correcting a simple kind of nonstationarity, namely that in which local variance is proportional to local mean squared. In the past, this has been linked in a vague way to the lognormal distribution, although if {Zt; t D}is strongly stationary and normal over a domain D,then clearly {exp (Zt); t D}will stillbe stationary, but lognormal. The appropriate link is made in this article through a universal transformation principle. More general situations are considered, leading to the use of a scaled variogram.  相似文献   
27.
变异函数在异常空间插值中的应用   总被引:2,自引:0,他引:2  
程勖  杨毅恒  丁建华  李楠 《世界地质》2007,26(3):298-303
针对数据空间架构中异常点对地质数据解译过程的干扰,以协方差数学理论为基础,提出界定空间数据分布方法-变异函数。着重阐述变异函数的求取过程,对新疆贝克滩水系沉积物化探数据处理,预测误差均值为0.1032、平均预测标准差为21.12、标准均方根预测误差为0.9841。预测值与样品实测值误差较小,界定的空间数据分布与实际矿床(点)分布吻合较好。  相似文献   
28.
The application of kriging-based geostatistical algorithms to integrate large-scale seismic data calls for direct and cross variograms of the seismic variable and primary variable (e.g., porosity) at the modeling scale, which is typically much smaller than the seismic data resolution. In order to ensure positive definiteness of the cokriging matrix, a licit small-scale coregionalization model has to be built. Since there are no small-scale secondary data, an analytical method is presented to infer small-scale seismic variograms. The method is applied to estimate the 3-D porosity distribution of a West Texas oil field given seismic data and porosity data at 62 wells.  相似文献   
29.
The determination of spatial dependency of regionalized variable (ReV) is important in engineering studies. Regional dependency function that leads to calculation of weighting coefficients is required in order to make regional or point‐wise estimations. After obtaining this dependency function, it is possible to complete missing records in the time series and locate new measurement station. Also determination of regional dependency function is also useful to understand the regional variation of ReV. Point Cumulative Semi‐Variogram (PCSV) is another methodology to understand the regional dependency of ReV related to the magnitude and the location. However, this methodology is not useful to determine the weighting coefficient, which is required to make regional and point‐wise estimations. However, in Point Semi‐Variogram (PSV) proposed here, weighting coefficient depends on both magnitude and location. Although the regional dependency function has a fluctuating structure in PSV approach, this function gradually increases with distance in PCSV. The study area is selected in Mississippi river basin with 38 streamflow stations used for PCSV application before. It is aimed to compare two different geostatistical models for the same data set. PSV method has an ability to determine the value of variable along with optimum number of neighbour stations and influence radius. PSV and slope PSV approaches are compared with the PCSV. It was shown that slope slope point semi‐variogram (SPSV) approaches had relative error below 5%, and PSV and PCSV methods revealed relative errors below 10%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
30.
李瀚波  潘蔚  毛玉仙 《铀矿地质》2010,26(5):301-305
在简要介绍变差函数的原理、算法和研究区地质情况的基础上,将变差函数引入火山岩型铀成矿作用与地形相关性研究中。详细描述了赣杭构造带中不同成矿规模矿田(床)区地形高程变差统计的过程,初步分析了变差统计结果的地质意义。研究结果表明,地形高程值变差函数的长轴方向可以反映研究区的主要构造方向,变差函数的长短轴半径与铀矿床的成矿规模在一定程度上具有对应关系。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号