首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   14篇
  国内免费   44篇
测绘学   5篇
大气科学   22篇
地球物理   5篇
地质学   3篇
海洋学   115篇
综合类   5篇
  2023年   2篇
  2022年   3篇
  2021年   8篇
  2020年   8篇
  2019年   10篇
  2018年   8篇
  2017年   8篇
  2016年   2篇
  2015年   11篇
  2014年   13篇
  2013年   11篇
  2012年   18篇
  2011年   6篇
  2010年   5篇
  2009年   9篇
  2008年   8篇
  2007年   10篇
  2006年   9篇
  2005年   2篇
  2004年   3篇
  2002年   1篇
排序方式: 共有155条查询结果,搜索用时 15 毫秒
141.
The international Argo program, a global observational array of nearly 4 000 autonomous profiling floats initiated in the late 1990s, which measures the water temperature and salinity of the upper 2 000 m of the global ocean, has revolutionized oceanography. It has been recognized one of the most successful ocean observation systems in the world. Today, the proposed decade action “OneArgo” for building an integrated global, full-depth, and multidisciplinary ocean observing array for beyond 2020 ...  相似文献   
142.
利用基于客观分析方法重构的Argo网格资料(未同化其他观测资料),分析探讨了2004年1月-2011年12月期间太平洋海域(60°S-60°N、120°E-80°W)盐度气候态分布特征与变化规律。结果表明,分别位于南、北亚热带海域的两个高盐(北部约为35.2,南部为36.4左右)中心,呈马鞍形的双峰分布,对称中心不在赤道,而是偏北12个纬度;在南、北纬40°附近海域,盐度等值线十分密集,形成“极锋”;在新西兰东南海域存在低盐水由南向北的入侵现象,且由表层至1000 m深层终年存在。盐度在亚极地海域每年大致呈一高一低的周期性变化,亚北极海域更明显,最高盐度值出现在每年的4月份,最低盐度值则出现在每年的9月份,高低盐度差在0.30~0.45之间。表层以下,盐度的周期性变化远不如表层明显,至500 m中层,整个太平洋海域的盐度最大变幅不超过0.10。赤道海域的表层盐度在2007年和2010年分别有明显的异常减小,最大振幅约为0.8,年际变化周期约为3年;北副热带和亚北极海域的表层,盐度表现出3-6个月的年际振荡,振幅约为0.2;中层盐度几乎没有明显的异常变化。  相似文献   
143.
综合利用Argo温、盐度观测剖面资料,以及中国南极科学考察时沿途获取的XBT温度剖面,分析探讨了苏拉威西海域(117°E-127°E,0°-8°N)上表层温度和盐度的气候态分布和变化特征.结果 表明,苏拉威西海域的温度范围约为2.5℃~30℃,盐度约为33.2‰ ~ 35.1‰.与垂向变化相比,温、盐度水平梯度均较小,...  相似文献   
144.
Argo观测点数量的空间分布与变化分析   总被引:2,自引:1,他引:2  
海洋渔业速报使用的遥感数据一般只能获得海洋表面的环境信息,而Argo数据可以为渔业速报提供较深处的温盐数据,通过分析Argo数据的空间分布与变化的特点,可以提高其在渔业速报中的应用质量。2001-2008年的统计数据显示,Argo浮标最大观测深度在2 200 m以浅,从观测点数量来看,以200 m,500 m,1 000 m,1 500 m,2 000 m为界分为六段;从垂直分辨率间隔周期来看,以200 m,400 m,1 000 m,2 000 m为界分为四段,垂直分辨率分别为5 m,10 m,50 m与20 m,50 m;从不同区域覆盖率来看,大西洋最高,太平洋最低,印度洋居中,北半球的格网覆盖率明显高于南半球的覆盖率,1 500 m以深格网覆盖率下降较快,1 700 m以深下降迅速。  相似文献   
145.
利用Argo剖面浮标观测资料,对2001-2004年11月期间西北太平洋热带气旋经过后海洋上层的响应作了分析研究.结果显示,热带气旋经过后,55.6%的观测剖面其混合层深度会加深,范围在0-60m,并且在气旋过后5d内更为明显;由于混合加剧,大约有77.8%的观测剖面其混合层温度会下降,最多达5℃;61.1%的混合层盐度会下降,平均降盐约0.12;表层流速增大的占54%,平均增大30cm·s,表层流速的变化与风速的大小呈正相关,相关系数仅为0.06;混合层内温度变化与热带气旋风速呈负相关,相关系数为-0.15;混合层温度下降有明显的右偏现象,在气旋路径右侧50-150km处,温度下降尤为明显,而混合层盐度在气旋路径两侧的变化基本呈对称状分布;混合层深度在气旋路径右侧加深更为明显,在右侧100 150km范围内达到最大;混合层深度的变化与气旋经过前混合层的初始深度呈明显的负相关,相关系数达-0.42.  相似文献   
146.
Argo drifters provide information of the vertical structure in the water column and have a potential for the improvement of understanding phytoplankton primary production and biogeochemical cycles in combination with ocean color satellite data, which can obtain the horizontal distribution of phytoplankton biomass in the surface layer. Our examples show that using Argo drifters with satellite-measured horizontal distribution of phytoplankton biomass at the sea surface allow an improved understanding of the development of the spring bloom. The other possible uses of Argo drifter are discussed.  相似文献   
147.
Temperature and salinity data from 2001 through 2005 from Argo profiling floats have been analyzed to examine the time evolution of the mixed layer depth (MLD) and density in the late fall to early spring in mid to high latitudes of the North Pacific. To examine MLD variations on various time scales from several days to seasonal, relatively small criteria (0.03 kg m−3 in density and 0.2°C in temperature) are used to determine MLD. Our analysis emphasizes that maximum MLD in some regions occurs much earlier than expected. We also observe systematic differences in timing between maximum mixed layer depth and density. Specifically, in the formation regions of the Subtropical and Central Mode Waters and in the Bering Sea, where the winter mixed layer is deep, MLD reaches its maximum in late winter (February and March), as expected. In the eastern subarctic North Pacific, however, the shallow, strong, permanent halocline prevents the mixed layer from deepening after early January, resulting in a range of timings of maximum MLD between January and April. In the southern subtropics from 20° to 30°N, where the winter mixed layer is relatively shallow, MLD reaches a maximum even earlier in December–January. In each region, MLD fluctuates on short time scales as it increases from late fall through early winter. Corresponding to this short-term variation, maximum MLD almost always occurs 0 to 100 days earlier than maximum mixed layer density in all regions.  相似文献   
148.
水下DGPS定位系统可定位范围分析   总被引:1,自引:0,他引:1  
水下DGPS定位系统是我国近些年研制的一套水声定位系统,该系统经过了在三亚、抚仙湖等地区的试验,得到了较高的定位精度.利用Argo浮标剖面数据,将海水视为水平分层均匀介质,计算声速剖面,根据Snell定律从理论上推出了理想情况下水下导航定位系统中浮标的可布设范围和水下DGPS定位系统浮标阵的可定位范围.  相似文献   
149.
Argo浮标温盐剖面观测资料的质量控制技术   总被引:7,自引:0,他引:7       下载免费PDF全文
Argo浮标可用来监测全球大洋从海表到2000 m深层的变化,鉴于Argo浮标的剖面观测数据存在位置错误、可疑剖面、异常数据以及盐度漂移等诸多问题,必须对Argo浮标资料进行有效的质量控制.本文基于Argo观测剖面资料与法国海洋开发研究院(IFREMER)提供的可靠历史观测数据集,提出了一种Argo资料质量控制的新途径.该方法通过寻找Argo浮标不同剖面位置与其"最佳匹配"历史剖面资料对比判别的途径,可以有效地识别Argo观测误差,特别是能够将由于Argo位置环境变化引起和由Argo浮标自身漂移引起的两类Argo浮标盐度偏移现象进行有效甄别,减少了对Argo浮标盐度剖面偏移的误判,有效节约了Argo浮标质量控制时间.本文还提出基于"三倍标准差"的异常数据检测方法,并将其与传统异常数据检测法相结合进行剖面异常数据剔除,有效实现了对异常数据的剔除.基于本文提出的Argo资料质量控制方法,对中国Argo实时资料中心网站提供的全球Argo浮标剖面进行了质量控制再分析,进一步剔除和订正了其中的一些数据误差,生成了经新的质量再控制后的全球Argo浮标剖面资料集.通过将质量再控制处理前后的数据与Ishii资料进行比较发现,处理后的数据比处理前的数据误差减小,表明本文提出的方法合理有效.  相似文献   
150.
利用Argo剖面浮标分析上层海洋对台风“布拉万”的响应   总被引:9,自引:2,他引:7  
In situ observations from Argo profiling floats combined with satellite retrieved SST and rain rate are used to investigate an upper ocean response to Typhoon Bolaven from 20 through 29 August 2012. After the passage of Typhoon Bolaven, the deepening of mixed layer depth(MLD), and the cooling of mixed layer temperature(MLT) were observed. The changes in mixed layer salinity(MLS) showed an equivalent number of increasing and decreasing because the typhoon-induced salinity changes in the mixed layer were influenced by precipitation, evaporation, turbulent mixing and upwelling of thermocline water. The deepening of the MLD and the cooling of the MLT indicated a significant rightward bias, whereas the MLS was freshened to the left side of the typhoon track and increased on the other side. Intensive temperature and salinity profiles observed by Iridium floats make it possible to view response processes in the upper ocean after the passage of a typhoon. The cooling in the near-surface and the warming in the subsurface were observed by two Iridium floats located to the left side of the cyclonic track during the development stage of the storm, beyond the radius of maximum winds relative to the typhoon center. Water salinity increases at the base of the mixed layer and the top of the thermocline were the most obvious change observed by those two floats. On the right side of the track and near the typhoon center when the typhoon was intensified, the significant cooling from sea surface to a depth of 200×104 Pa, with the exception of the water at the top of the thermocline, was observed by the other Iridium float. Owing to the enhanced upwelling near the typhoon center, the water salinity in the near-surface increased noticeably. The heat pumping from the mixed layer into the thermocline induced by downwelling and the upwelling induced by the positive wind stress curl are the main causes for the different temperature and salinity variations on the different sides of the track. It seems that more time is required for the anomalies in the subsurface to be restored to pretyphoon conditions than for the anomalies in the mixed layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号