首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2144篇
  免费   66篇
  国内免费   457篇
测绘学   66篇
大气科学   297篇
地球物理   531篇
地质学   1288篇
海洋学   281篇
天文学   55篇
综合类   10篇
自然地理   139篇
  2024年   15篇
  2023年   41篇
  2022年   55篇
  2021年   76篇
  2020年   179篇
  2019年   114篇
  2018年   152篇
  2017年   216篇
  2016年   152篇
  2015年   184篇
  2014年   291篇
  2013年   415篇
  2012年   249篇
  2011年   39篇
  2010年   26篇
  2009年   57篇
  2008年   43篇
  2007年   39篇
  2006年   31篇
  2005年   47篇
  2004年   32篇
  2003年   30篇
  2002年   35篇
  2001年   18篇
  2000年   24篇
  1999年   21篇
  1998年   21篇
  1997年   14篇
  1996年   9篇
  1995年   12篇
  1994年   9篇
  1993年   1篇
  1992年   5篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1980年   1篇
排序方式: 共有2667条查询结果,搜索用时 15 毫秒
81.
The comprehensive utilization of floating breakwaters, specially acting as a supporting structure for offshore marine renewable energy explorations, has received more and more attention recently. Based on linear water-wave theory, the hydrodynamic performance of a T-shaped floating breakwater is semi-analytically investigated through the matched eigenfunction expansion method (MEEM). Auxiliary functions, to speed up the convergence and improve the accuracy in the numerical computations, are introduced to represent the singular behavior of fluid field near the lower salient corners of the structure. The effects of the height and installation position of the vertical screen on the reflection and transmission coefficients, dynamic response and wave forces are examined. It is found that the presence of the screen shifts the resonance frequency of RAO for both surge and pitch modes to the low-frequency area, while has no effect on heave mode. The identical added masses, damping and transmission coefficients can be obtained in the cases where the screen holds the same distance away from the longitudinal central axis of the upper box-type structure. Moreover, a relatively small pitch response can be achieved in a wide wave–frequency range, when the breakwater is Γ-shaped.  相似文献   
82.
Wave Energy Converters (WECs) have excellent potential as a source of renewable energy that is yet to be commercially realised. Recent attention has focused on the installation of Oscillating Water Column (OWC) devices as a part of harbor walls to provide advantages of cost–sharing structures and proximity of power generation facilities to existing infrastructure. In this paper, an incompressible three–dimensional CFD model is constructed to simulate a fixed Multi–Chamber OWC (MC–OWC) device. The CFD model is validated; the simulation results are found to be in good agreement with experimental results obtained from a scale physical model tested in a wave tank. The validated CFD model is then used for a benchmark study of 96 numerical tests. These investigate the effects of the PTO damping caused by the power take–off (PTO) system on device performance. The performance is assessed for a range of regular wave heights and periods. The results demonstrate that a PTO system with an intermediate damping can be used for all chambers in the MC–OWC device for most wave period ranges, except for the long wave periods. These require a higher PTO damping. An increased incident wave height reduces the device capture width ratio, but there is a noticeable improvement for long wave periods.  相似文献   
83.
Achieving a reliable and accurate numerical prediction of the self-propulsion performance of a ship is still an open problem that poses some relevant issues. Several CFD methods, ranging from boundary element methods (BEM) to higher-fidelity viscous Reynolds averaged Navier–Stokes (RANS) based solvers, can be used to accurately analyze the separate problems, i.e. the open water propeller and the hull calm water resistance. However, when the fully-coupled self-propulsion problem is considered, i.e. the hull advancing at uniform speed propelled by its own propulsion system, several complexities rise up. Typical flow simplifications adopted to speed-up the simulations of the single analysis (hull and propeller separately) lose their validity requiring a more complex solver to tackle the fully-coupled problem. The complexity rises up further when considering a maneuver condition. This aspect increases the computational burden and, consequently, the required time which becomes prohibitive in a preliminary ship design stage.The majority of the simplified methods proposed in literature to include propeller effects, without directly solve the propeller flow, in a high-fidelity viscous solver are not able to provide all the commonly required self-propulsion coefficients. In this work, a new method to enrich the results from a body force based approach is proposed and investigated, with the aim to reduce as much as possible the computational burden without losing any useful result. This procedure is tested for validation on the KCS hull form in self-propulsion and maneuver conditions.  相似文献   
84.
Urban system is shaped by the interactions between different regions and regions planned by the government, then reshaped by human activities and residents’ needs. Understanding the changes of regional structure and dynamics of city function based on the residents’ movement demand are important to evaluate and adjust the planning and management of urban services and internal structures. This paper constructed a probabilistic factor model on the basis of probabilistic latent semantic analysis and tensor decomposition, for purpose of understanding the higher order interactive population mobility and its impact on urban structure changes. First, a four-dimensional tensor of time (T)?×?week (W)?×?origin (O)?×?destination (D) was constructed to identify the day-to-day activities in three time modes and weekly regularity of weekday/weekend pattern. Then we reclassified the urban regions based on the space clustering formed by the space factor matrix and core tensor. Finally, we further analysed the space–time interaction on different time scales to deduce the actual function and connection strength of each region. Our research shows that the application of individual-based spatial–temporal data in human mobility and space–time interaction study can help to analyse urban spatial structure and understand the actual regional function from a new perspective.  相似文献   
85.
The effects of aerosol–radiation interactions(ARI) are not only important for regional and global climate, but they can also drive particulate matter(PM) pollution. In this study, the ARI contribution to the near-surface fine PM(PM2.5)concentrations in the Guanzhong Basin(GZB) is evaluated under four unfavorable synoptic patterns, including "northlow", "transition", "southeast-trough", and "inland-high", based on WRF-Chem model simulations of a persistent heavy PM pollution episode in January 2019. Simulations show that ARI consistently decreases both solar radiation reaching down to the surface(SWDOWN) and surface temperature(TSFC), which then reduces wind speed, induces sinking motion,and influences cloud formation in the GZB. However, large differences under the four synoptic patterns still exist. The average reductions of SWDOWN and daytime TSFC in the GZB range from 15.2% and 1.04°C in the case of the"transition" pattern to 26.7% and 1.69°C in the case of the "north-low" pattern, respectively. Furthermore, ARI suppresses the development of the planetary boundary layer(PBL), with the decrease of PBL height(PBLH) varying from 18.7% in the case of the "transition" pattern to 32.0% in the case of the "north-low" pattern. The increase of daytime near-surface PM2.5 in the GZB due to ARI is 12.0%, 8.1%, 9.5%, and 9.7% under the four synoptic patterns, respectively. Ensemble analyses also reveal that when near-surface PM2.5 concentrations are low, ARI tends to lower PM2.5 concentrations with decreased PBLH, which is caused by enhanced divergence or a transition from divergence to convergence in an area. ARI contributes 15%–25% toward the near-surface PM2.5 concentrations during the severe PM pollution period under the four synoptic patterns.  相似文献   
86.
The paper presents a numerical method for calculating the particle trajectories of nonlinear gravity waves in deep water. Particle trajectories, mass-transport velocity and Lagrangian wave period can be accurately determined by the proposed method. The high success rate of the proposed method is examined by comparing the present results with those of (a) Longuet-Higgins, M.S., 1986, 1987. Eulerian and Lagrangian aspects of surface waves. Journal of Fluid Mechanics 173, 683-707 and (b) Lagrangian moments and mass transport in Stokes waves. Journal of Fluid Mechanics 179, 547-555. It is shown that the dimensionless mass-transport velocity can exceed 10% for large waves, and the Lagrangian wave period is much larger than the Eulerian wave period for large waves.  相似文献   
87.
A Wind stress–Current Coupled System (WCCS) consisting of the HYbrid Coordinate Ocean Model (HYCOM) and an improved wind stress algorithm based on Donelan et al. [Donelan, W.M., Drennan, Katsaros, K.B., 1997. The air–sea momentum flux in mixed wind sea and swell conditions. J. Phys. Oceanogr. 27, 2087–2099] is developed by using the Earth System Modeling Framework (ESMF). The WCCS is applied to the global ocean to study the interactions between the wind stress and the ocean surface currents. In this study, the ocean surface current velocity is taken into consideration in the wind stress calculation and air–sea heat flux calculation. The wind stress that contains the effect of ocean surface current velocity will be used to force the HYCOM. The results indicate that the ocean surface velocity exerts an important influence on the wind stress, which, in turn, significantly affects the global ocean surface currents, air–sea heat fluxes, and the thickness of ocean surface boundary layer. Comparison with the TOGA TAO buoy data, the sea surface temperature from the wind–current coupled simulation showed noticeable improvement over the stand-alone HYCOM simulation.  相似文献   
88.
The Canadian Model of Ocean Carbon (CMOC) has been developed as part of a global coupled climate carbon model. In a stand-alone integration to preindustrial equilibrium, the model ecosystem and global ocean carbon cycle are in general agreement with estimates based on observations. CMOC reproduces global mean estimates and spatial distributions of various indicators of the strength of the biological pump; the spatial distribution of the air-sea exchange of CO2 is consistent with present-day estimates. Agreement with the observed distribution of alkalinity is good, consistent with recent estimates of the mean rain ratio that are lower than historic estimates, and with calcification occurring primarily in the lower latitudes. With anthropogenic emissions and climate forcing from a 1850-2000 climate model simulation, anthropogenic CO2 accumulates at a similar rate and with a similar spatial distribution as estimated from observations. A hypothetical scenario for complete elimination of iron limitation generates maximal rates of uptake of atmospheric CO2 of less than 1 PgC y−1, or about 11% of 2004 industrial emissions. Even a ‘perfect’ future of sustained fertilization would have a minor impact on atmospheric CO2 growth. In the long term, the onset of fertilization causes the ocean to take up an additional 77 PgC after several thousand years, compared with about 84 PgC thought to have occurred during the transition into the last glacial maximum due to iron fertilization associated with increased dust deposition.  相似文献   
89.
The equations of motion for the coupled dynamics of a small liferaft and fast rescue craft in a surface wave are formulated in two dimensions using the methods of Kane and Levinson [1985. Dynamics: Theory and Applications. McGraw-Hill Inc., New York]. It is assumed that the motion normal to the wave surface is small and can be neglected, i.e. the bodies move along the propagating wave profile. The bodies are small so that wave diffraction and reflection are negligible. A Stokes second order wave is used and the wave forces are applied using Morison's equation for a body in accelerated flow. Wind loads are similarly modelled using drag coefficients. The equations are solved numerically using the Runge–Kutta routine “ode45” of MATLAB®. The numerical model provides guidelines for predicting the tow loads and motions of small craft in severe sea states.  相似文献   
90.
New laboratory and field data are presented on fluid advection into the swash zone. The data illustrate the region of the inner surf zone from which sediment can be directly advected into the swash zone during a single uprush, which is termed the advection length. Experiments were conducted by particle tracking in a Lagrangian reference frame, and were performed for monochromatic breaking waves, solitary bores, non-breaking solitary waves and field conditions. The advection length is normalised by the run-up length to give an advection ratio, A, and different advection ratios are identified on the basis of the experimental data. The data show that fluid enters the swash zone from a region of the inner surf zone that can extend a distance seaward of the bore collapse location that is approximately equal to half of the run-up length. This region is about eight times wider than the region predicted by the classical swash solution of Shen and Meyer [Shen, M.C., Meyer, R.E., 1963. Climb of a bore on a beach. Part 3. Runup. Journal of Fluid Mechanics 16, 113–125], as illustrated by Pritchard and Hogg [Pritchard, D., Hogg, A.J., 2005. On the transport of suspended sediment by a swash event on a plane beach. Coastal Engineering 52, 1–23]. Measured advection ratios for periodic waves show no significant trend with Iribarren number, consistent with self-similarity in typical swash flows. The data are compared to recent characteristic solutions of the non-linear shallow water wave (NLSW) equations and both finite difference and finite volume solutions of the NLSW equations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号