首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   432篇
  免费   57篇
  国内免费   143篇
测绘学   2篇
大气科学   4篇
地球物理   57篇
地质学   451篇
海洋学   76篇
天文学   8篇
综合类   9篇
自然地理   25篇
  2023年   2篇
  2022年   8篇
  2021年   20篇
  2020年   21篇
  2019年   15篇
  2018年   14篇
  2017年   45篇
  2016年   20篇
  2015年   12篇
  2014年   35篇
  2013年   32篇
  2012年   21篇
  2011年   44篇
  2010年   29篇
  2009年   34篇
  2008年   29篇
  2007年   26篇
  2006年   34篇
  2005年   24篇
  2004年   31篇
  2003年   18篇
  2002年   15篇
  2001年   11篇
  2000年   9篇
  1999年   4篇
  1998年   13篇
  1997年   8篇
  1996年   13篇
  1995年   12篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   1篇
  1986年   5篇
  1982年   1篇
  1978年   1篇
排序方式: 共有632条查询结果,搜索用时 46 毫秒
21.
郑学正  关鸿 《岩石学报》1996,12(3):424-433
大水清金矿带是华北克拉通中有代表性的改造型绿岩金矿之一。它产于前东武纪绿岩地体中安家营子石英二长岩体内外接触带附近的剪切带中。金矿化交代主要受后阶段张性脆裂控制,而剪切带早阶段韧性剪切作用无明显矿化交代,后者主要为成矿交代提供有益的江游交代构造环,境即成矿交代蚀变作用和剪切带同步的两阶段演化模式。大水清金矿带的交代作用有四个阶段:即用长石化阶段,绿泥石化阶段,黄铁绢英岩化和石英-硫化物阶段以及石英-碳酸盐化阶段。第三阶段由五个亚阶段组成:即黄铁绢英岩化和强硅化-强黄铁矿化,石英-多金属硫化物交代,石英-贫扶矿充填交代和细粒黄铁矿充填交代。其中前四个亚阶段是本区金的主要成矿期.当韧性剪切转化为张性脆裂时产生的骤然扩容和伴随发生的交代体系转变为富硅体系的钾交代和石英-硫化物交代是金矿成矿的关键。本文还研究和探讨了该金矿成矿交代流体的性质及交代的物理化学环境。  相似文献   
22.
It is found by field investigation that the near horizontal top surface of the brown or brick-red hydrothermai alteration zone varies obviously in elevation at different sections of the same layer on the caldera‘s inner wall of Tianchi, with that at the north section near the Tianwen Peak about 110 m higher than that at the south near the Jiangjun Peak in Korea. The top surface of the hydrothermai alteration zone can be taken as key horizon to tectonic movement. The difference indicates that the total uplift height of the NW wall of the Liudaogou-Tianchi-Jingfengshan fault, the principal fault trending NE at Tianchi, is bigger than that of the SE wall ever since the occurrence of hydrothermal alteration. This also explains why the topography in the northwest side of Tianchi is steeper and with more developed river system than in the southeast. The uplifting of the northeastern wall is bigger than that of the southwest along the principal NW-trend fault, namely, the Baishanzhen-Tianchi-Jince fault. It is observed from characters of hydrothermal alteration and the palaeoresiduum, that the recent vertical movement rate along the principal NE-trend fault is larger than that of the principal NW-trend fault. The two faults intersect at Tianchi, dividing the volcano into 4 blocks, with the uplift magnitudes decreasing successively in the order of the north, the west, the east and the south block. The biggest uplift of the north block corresponds well to the shallow magma batch in the north of Tianchi observed by DSS and telluric electromagnetic sounding, and etc. and they may be related with the causes.  相似文献   
23.
The Tertiary Mineoka ophiolite occurs in a fault zone at the intersection of the Honshu and Izu forearcs in central Japan and displays structural evidence for three major phases of deformation: normal and oblique-slip faults and hydrothermal veins formed during the seafloor spreading evolution of the ophiolite at a ridge-transform fault intersection. These structures may represent repeated changes in differential stress and pore-fluid pressures during their formation. The second series of deformation is characterized by oblique thrust faults with Riedel shears and no significant mineral veining, and is interpreted to have resulted from transpressional dextral faulting during the obduction of the ophiolite through oblique convergence and tectonic accretion. This deformation occurred at the NW corner of a TTT-type (trench–trench–trench) triple junction in the NW Pacific rim before the middle Miocene. The third series of deformation of the ophiolite is marked by contractional and oblique shear zones, Riedel shears, and thrust faults that crosscut and offset earlier structures, and that give the Mineoka fault zone its lenticular (phacoidal) fabric at all scales. This deformation phase was associated with the establishment and the southward migration of the TTT Boso triple junction and with the kinematics of oblique subduction and forearc sliver fault development. The composite Mineoka ophiolite hence displays rocks and structures that evolved during its complex geodynamic history involving seafloor spreading, tectonic accretion, and triple junction evolution in the NW Pacific Rim.  相似文献   
24.
利用七水硫酸镁和氢氧化镁,研究了在200℃水热条件下合成产物的物相及其随时间的变化机制。  相似文献   
25.
Experimental studies on the interactions between artificial seawater (ASW) and fresh rhyolite, perlite and weakly altered dacitic tuff containing a small amount of smectite suggest changing cation transfer during smectite-forming processes. Initially, dissolution of K from the rocks accompanies incorporation of Mg and Ca from ASW during both earlier (devitrification stage) and later smectite formation, whereas Ca incorporated with early smectite formation redissolves with progressive reaction. Barium mobility increases toward the later smectite-forming reactions. Therefore, the large amounts of barite, anhydrite and gypsum in Kuroko ore deposits are considered to have precipitated from hydrothermal solutions derived from the interaction with previously altered felsic rocks during late smectite formation, rather than by the reaction with fresh felsic rocks.Editorial handling: D. Lentz  相似文献   
26.
王娴  李建康  丁欣  张德会 《地质论评》2016,62(S1):407-408
绿柱石与硅铍石均为铍矿物家族中的主要成员,是重要的工业铍矿物,利用背散射和电子探针研究矿物特性时,常可见两者共生或发生交代的现象(饶灿,2009;Reyf, 2008; Evensen, 1999),其结晶条件对于成矿环境与成矿机制均具有重要的指示意义。前人已进行了关于绿柱石,硅铍石等铍矿物稳定性的实验研究,但研究多采用高温淬火的高温高压实验装置,误差大,且无法原位观测矿物结晶习性(王振杰, 1992;Sirbescu et al., 2009),本文利用热液金刚石压腔,原位观测了绿柱石与硅铍石的结晶过程,得到了它们结晶的温压条件及结晶习性。  相似文献   
27.
28.
The Fengjia barite–fluorite deposit in southeast Sichuan is a stratabound ore deposit which occurs mainly in Lower Ordovician carbonate rocks. Here we present results from fluid inclusion and oxygen and hydrogen isotope studies to determine the nature and origin of the hydrothermal fluids that generated the deposit. The temperature of the ore‐forming fluid shows a range of 86 to 302 °C. Our detailed microthermometric data show that the temperature during mineralization of the fluorite and barite in the early ore‐forming stage was higher than that during the formation of the calcite in the late ore‐forming stage. The salinity varied substantially from 0.18% to 21.19% NaCl eqv., whereas the density was around 1.00 g/cm3. The fluid composition was mainly H2O (>91.33%), followed by CO2, CH4 and traces of C2H6, CO, Ar, and H2S. The dominant cation was Na+ and the dominant anion Cl, followed by Ca2+, SO42‐, K+, and Mg2+, indicating a mid–low‐temperature, mid‐low‐salinity, low‐density NaCl–H2O system. Our results demonstrate that the temperature decreased during the ore‐forming process and the fluid system changed from a closed reducing environment to an open oxidizing environment. The hydrogen and oxygen isotope data demonstrate that the hydrothermal fluids in the study area had multiple sources, primarily formation water, as well as meteoric water and metamorphic water. Combined with the geological setting and mineralization features we infer that the stratabound barite–fluorite deposits originated from mid–low‐temperature hydrothermal fluids and formed vein filling in the fault zone.  相似文献   
29.
《Resource Geology》2018,68(3):287-302
Banded iron formations (BIFs) are the most significant source of iron in the world. In this study, we report petrographic and geochemical data of the BIF from the Meyomessi area in the Ntem Complex, southern Cameroon, and discuss their genesis and the iron enrichment process. Field investigations and petrography have revealed that the studied BIF samples are hard; compact; weakly weathered; and composed of magnetite, subordinate quartz, and geothite. The geochemical composition of the whole rock reveals that iron and silica represent more than 98 wt% of the average composition, whereas Al2O3, TiO2, and high‐field strength elements (HFSE) contents are very low, similar to detritus‐free marine chemical precipitates. The total iron (TFe) contents range from 48.71 to 65.32 wt % (average of 53.29 wt %) and, together with the low concentrations of deleterious elements (0.19 wt % P on average), are consistent with medium‐grade iron ores by global standards. This interpretation is confirmed by the SiO2/Fe2O3total versus (MgO + CaO + MnO)/Fe2O3total discrimination plot in which most of the Meyomessi BIF samples fall in the field of medium‐grade siliceous ore. Only one sample (MGT94) plots in the high‐grade magnetite–geothite ore domain. The high Fe/Ti (376.36), Fe/Al (99.90), and Si/Al (29.26) ratios of the sample are consistent with significant hydrothermal components. The rare earth elements (REE) contents of the studied BIF samples are very low (∑REE: 0.81–1.47 ppm), and the Post‐Archaean Australian Shale (PAAS)‐normalized patterns display weak positive Eu anomalies (Eu/Eu*: 1.15–1.33), suggesting a syngenetic low‐temperature hydrothermal solutions, similar to other BIF worldwide. However, the Meyomessi BIFs show high Fe contents when compared to the other BIFs. This indicates an epigenetic mineralization process affected the Meyomessi BIF. From the above results and based on the field and analytical data, we propose that the genetic model of iron ores at the Meyomessi area involves two stages of the enrichment process, hypogene enrichment of BIF protore by metamorphic and magmatic fluids followed by supergene alteration as indicated by the presence of goethite in the rocks.  相似文献   
30.
《China Geology》2018,1(2):225-235
For the first time, we present the rare earth element (REE) and sulfur isotopic composition of hydrothermal precipitates recovered from the Tangyin hydrothermal field (THF), Okinawa Trough at a water depth of 1206 m. The natural sulfur samples exhibit the lowest ΣREE concentrations (ΣREE= 0.65×10–6–4.580×10–6) followed by metal sulfides (ΣREE=1.71×10–6–11.63×10–6). By contrast, the natural sulfur-sediment samples have maximum ΣREE concentrations (ΣREE=11.54×10–6–33.06×10–6), significantly lower than those of the volcanic and sediment samples. Nevertheless, the δEu, δCe, (La/Yb)N, La/Sm, (Gd/Yb)N and normalized patterns of the natural sulfur and metal sulfide show the most similarity to the sediment. Most hydrothermal precipitate samples are characterized by enrichments of LREE (LREE/HREE=10.09–24.53) and slightly negative Eu anomalies or no anomaly (δEu=0.48–0.99), which are different from the hydrothermal fluid from sediment-free mid-oceanic ridges and back-arc basins, but identical to the sulfides from the Jade hydrothermal field. The lower temperature and more oxidizing conditions produced by the mixing between seawater and hydrothermal fluids further attenuate the leaching ability of hydrothermal fluid, inducing lower REE concentrations for natural sulfur compared with metal sulfide; meanwhile, the negative Eu anomaly is also weakened or almost absent. The sulfur isotopic compositions of the natural sulfur (δ34S=3.20‰–5.01‰, mean 4.23‰) and metal sulfide samples (δ34S=0.82‰–0.89‰, mean 0.85‰) reveal that the sulfur of the chimney is sourced from magmatic degassing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号