首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   849篇
  免费   184篇
  国内免费   212篇
测绘学   21篇
大气科学   128篇
地球物理   560篇
地质学   264篇
海洋学   225篇
天文学   21篇
综合类   17篇
自然地理   9篇
  2023年   5篇
  2022年   12篇
  2021年   17篇
  2020年   22篇
  2019年   41篇
  2018年   36篇
  2017年   37篇
  2016年   52篇
  2015年   57篇
  2014年   56篇
  2013年   64篇
  2012年   28篇
  2011年   58篇
  2010年   43篇
  2009年   61篇
  2008年   58篇
  2007年   76篇
  2006年   53篇
  2005年   43篇
  2004年   34篇
  2003年   39篇
  2002年   43篇
  2001年   28篇
  2000年   36篇
  1999年   42篇
  1998年   38篇
  1997年   25篇
  1996年   36篇
  1995年   23篇
  1994年   21篇
  1993年   23篇
  1992年   12篇
  1991年   7篇
  1990年   7篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1977年   1篇
排序方式: 共有1245条查询结果,搜索用时 171 毫秒
41.
It is important to estimate the influence of layered soil in soil–structure interaction analyses. Although a great number of investigations have been carried out on this subject, there are very few practical methods that do not require complex calculations. In this paper, a simple and practical method for estimating the horizontal dynamic stiffness of a rigid foundation on the surface of multi‐layered soil is proposed. In this method, waves propagating in the soil are traced using the conception of the cone model, and the impulse response function can be calculated directly and easily in the time domain with a good degree of accuracy. The characteristics of the impedance, that is the transformed value to the frequency domain of the obtained impulse response, are studied using two‐ to four‐layered soil models. The cause of the fluctuation of impedance is expressed clearly from its relation to reflected waves from the lower layer boundary in the model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
42.
The scaled boundary finite‐element method, a semi‐analytical computational scheme primarily developed for dynamic stiffness of unbounded domains, is applied to the analysis of unsteady seepage flow problems. This method is based on the finite‐element technology and gains the advantages of the boundary element method as well. Only boundary of the domain is discretized, no fundamental solution is required and singularity problems can be modeled rigorously. Anisotropic and non‐homogeneous materials satisfying similarity are modeled with no additional efforts. In this study, firstly, formulation of the method for the transient seepage flow problems is derived followed by its solution procedures. The accuracy, simplicity and applicability of the method are demonstrated via four numerical examples of transient seepage flow – three of them are available in the literature. Homogenous, non‐homogenous, isotropic and anisotropic material properties are considered to show the versatility of the technique. Excellent agreement with the finite‐element method is observed. The method out‐performs the finite‐element method in modeling singularity points. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
43.
The model proposed originally by Mannheim and Kazanas for fitting the shapes of galactic rotation curves has recently been considered by Grumiller to describe gravity of a central object at large distances. Herein we employ the same geometry within the context of nonlinear electrodynamics (NED). Pure electrical NED model is shown to generate the novel Rindler acceleration term in the metric which explains anomalous behaviors of test particles/satellites. Remarkably a pure magnetic model of NED yields flat rotation curves that may account for the missing dark matter. Weak and strong energy conditions are satisfied in such models of NED.  相似文献   
44.
A model for the stress‐dependent elastic wave velocity response of fractured rock mass is proposed based on experimental evidence of stress‐dependent fracture normal and shear stiffness. Previously proposed models and previous experimental studies on stress‐dependent fracture stiffness have been reviewed to provide a basis for the new model. Most of the existing stress‐dependent elastic wave velocity models are empirical, with model parameters that do not have clear physical meanings. To propose the new model, the rock mass is assumed to have randomly oriented microscopic fractures. In addition, the characteristic length of microfractures is assumed to be sufficiently short compared to the rock mass dimensions. The macroscopic stress‐dependent elastic wave velocity response is assumed to be attributed to the stress dependency of fracture stiffness. The stress‐dependent fracture normal stiffness is defined as a generalized power law function of effective normal stress, which is a modification of the Goodman's model. On the other hand, the stress dependency of fracture shear stiffness is modeled as a linear function of normal stress based on experimental data. Ultrasonic wave velocity responses of a dry core sample of Berea sandstone were tested at effective stresses ranging from 2 to 55 MPa. Visual observation of thin sections obtained from the Berea sandstone confirms that the assumptions made for microstructure of rock mass model are appropriate. It is shown that the model can describe the stress‐dependent ultrasonic wave velocity responses of dry Berea sandstone with a set of reasonable material parameter values. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
45.
An approach is developed to simulate wave–wave interactions using nonlinear elliptic mild-slope equation in domains where wave reflection, refraction, diffraction and breaking effects must also be considered. This involves the construction of an efficient solution procedure including effective boundary treatment, modification of the nonlinear equation to resolve convergence issues, and validation of the overall approach. For solving the second-order boundary-value problem, the Alternating Direction Implicit (ADI) scheme is employed, and the use of approximate boundary conditions is supplemented, for improved accuracy, with internal wave generation method and dissipative sponge layers. The performance of the nonlinear model is investigated for a range of practical wave conditions involving reflection, diffraction and shoaling in the presence of nonlinear wave–wave interactions. In addition, the transformation of a wave spectrum due to nonlinear shoaling and breaking, and nonlinear resonance inside a rectangular harbor are simulated. Numerical calculations are compared with the results from other relevant nonlinear models and experimental data available in literature. Results show that the approach developed here performs reasonably well, and has thus improved the applicability of this class of wave transformation models.  相似文献   
46.
The initiation and propagation of directional hydraulic fracturing (DHF) was investigated based on true tri-axial experiment and finite element modeling. The influences of notch angle, notch length and injection rate on the DHF were investigated. The initiation and propagation of DHF was modeled by a 3D nonlinear finite element method. A comparison between experimental investigation and numerical modeling results indicates that there is a good correlation between unbalanced force (UF) and fracturing. UF can be used to predict the hydraulic fracture initiation and propagation.  相似文献   
47.
为了全面分析浙江省不同区域能见度变化基本特征及影响机理,基于杭州、宁波、温州3个国家基本气象站2013-2014年逐时能见度观测资料,比较分析了3市能见度变化的基本特征。发现3市不同等级能见度出现频率基本一致,随着能见度等级的提高,出现频率逐渐降低;从能见度的日变化来看,07时(北京时)前后最低,之后缓慢上升,14-15时达到最高,随后逐渐下降;全年有两个能见度较低时段,分别出现在12月-次年2月和5-6月;总体而言,宁波能见度最优,杭州和温州大体相当。功率谱分析结果表明,3市能见度均有显著的日周期,高频波段呈现出多个显著谱峰,低频波段存在若干显著谱峰。进一步开展机理分析,发现相对湿度和PM2.5浓度是调制大气能见度的关键因子,相对湿度增大、PM2.5浓度升高导致能见度降低。在同一相对湿度等级下,初始阶段能见度随PM2.5浓度的升高迅速降低,到达“拐点”之后降低速率趋于缓慢。在同一PM2.5浓度水平下,相对湿度越大,能见度越低,说明水汽对能见度也有重要影响。基于相对湿度和PM2.5浓度两个因子,采用非线性拟合方案构建了大气能见度定量统计模型,总体而言模型拟合效果较好。最后针对研究中存在的不足和未来值得进一步发掘的科学问题进行了讨论。  相似文献   
48.
Leaf mechanical traits are important to understand how aquatic plants fracture and deform when subjected to abiotic (currents or waves) or biotic (herbivory attack) mechanical forces. The likely occurrence of variation during leaf ontogeny in these traits may thus have implications for hydrodynamic performance and vulnerability to herbivory damage, and may be associated with changes in morphologic and chemical traits. Seagrasses, marine flowering plants, consist of shoot bundles holding several leaves with different developmental stages, in which outer older leaves protect inner younger leaves. In this study we examined the long‐lived seagrass Posidonia oceanica to determine ontogenic variation in mechanical traits across leaf position within a shoot, representing different developmental stages. Moreover, we investigated whether or not the collection procedure (classical uprooted shoot versus non‐destructive shoot method: cutting the shoot without a portion of rhizome) and time span after collection influence mechanical measurements. Neither collection procedure nor time elapsed within 48 h of collection affected measurements of leaf biomechanical traits when seagrass shoots were kept moist in dark cool conditions. Ontogenic variation in mechanical traits in P. oceanica leaves over intermediate and adult developmental stages was observed: leaves weakened and lost stiffness with aging, while mid‐aged leaves (the longest and thickest ones) were able to withstand higher breaking forces. In addition, younger leaves had higher nitrogen content and lower fiber content than older leaves. The observed patterns may explain fine‐scale within‐shoot ecological processes of leaves at different developmental stages, such as leaf shedding and herbivory consumption in P. oceanica.  相似文献   
49.
以不同刚度硅胶圆杆群为概化植物模型,测定其抗弯弹性模量,通过波浪水槽实验,研究规则波在不同刚度植物杆群内的流速分布、紊动特征及不同刚度杆群的消浪效果。实验结果表明,当波浪通过柔性杆群时,受其摆动的影响,流速周期变化从单峰型逐渐转变成双峰型,杆群刚度越小形成的二次波峰越明显;不同刚度杆群内水体紊动强度变化显示,杆群刚度越大,造成杆群内水体的紊动强度越大;随着杆群抗弯弹性模量的增大,其消浪系数也增大,消浪系数的增长与材料的抗弯弹性模量值非线性关系,而是在某一弹性模量范围内,对消浪系数的影响较为敏感。  相似文献   
50.
Considering the feature of tropical cyclones (TCs) that strong positive vorticity exists in the lower layers of troposphere, this study proposed to use vorticity at 850 hPa as cost function to find the conditional nonlinear optimal perturbation (CNOP), which was largely different from those previous studies using total energy of perturbed forecast variables. The CNOP was obtained by an ensemble-based approach. All of the sensitive areas determined by CNOP with vorticity at 850 hPa as cost function for the three cases were located over the TC core region and its vicinity. The impact of the CNOP-based adaptive observations on TC forecasts was evaluated with three cases via observational system simulation experiments (OSSEs). Results showed obvious improvements in TC intensity or track forecasts due to the CNOP-based adaptive observations, which were related to the main error source of the verification area, i.e., intensity error or location error.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号