首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   258篇
  免费   16篇
  国内免费   10篇
测绘学   15篇
地球物理   25篇
地质学   14篇
海洋学   223篇
综合类   1篇
自然地理   6篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   19篇
  2018年   3篇
  2017年   7篇
  2016年   6篇
  2015年   2篇
  2014年   9篇
  2013年   11篇
  2012年   2篇
  2011年   11篇
  2010年   6篇
  2009年   19篇
  2008年   19篇
  2007年   10篇
  2006年   18篇
  2005年   14篇
  2004年   13篇
  2003年   17篇
  2002年   16篇
  2001年   12篇
  2000年   13篇
  1999年   12篇
  1998年   3篇
  1997年   4篇
  1996年   18篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有284条查询结果,搜索用时 359 毫秒
211.
212.
海水油荧光测量方法实验研究   总被引:2,自引:0,他引:2  
根据荧光测量方法的原理,采和双光路,双通道及单片微机控制,数据自动采集的技术,于1997年研制成功用于海洋现场探测的单波段水中油荧光计。应用该水中油荧光计进行了海水中微量油份的测量实验研究。  相似文献   
213.
地球科学研究的新型观测平台——线缆式海底地震观测台(网),是一种基于海底光电复合缆的光电传输技术,将传统的陆地地震观测台站向海区延伸、弥补海区地震观测台站的不足,实现实时、长期连续观测地球内部过程的新技术,目前已成为海洋科学的创新性研究平台,相关的技术方法也有了突飞猛进的进步.2018年,我国研发建设的"福建近海海底地震观测台",在前人探索研究的基础上,突破了线缆式海底地震观测台(网)关键技术,实现数据实时传输功能,具备进入地震行业网的能力.经过超过三个月的试运行检验,证实了系统的稳定性和可靠性.本文详细介绍了福建浯屿岛海底地震台(网)研发的关键技术与建设流程、关键技术环节相关规范和检测结果.地震采集数据结果表明,浯屿岛海底地震观测台实现了数据实时流服务,并可接入中国地震局JOPENS系统,数据实时传输正常,并自动存储实时波形数据;试运行期间以实际99%以上的高运行率,达到了国家测震台网管理规定的优秀标准.研发结果可为我国今后的海底地震观测台(网)建设提供重要参考指标与经验借鉴.  相似文献   
214.
介绍一种水下爆破切割装置的组成、特点、工作原理及试验情况,并对水压引信、水下聚能定向爆破等关键技术进行了有益的探讨。  相似文献   
215.
文章介绍了利用非线性声学原理和声纳测距原理测量海冰上下界面信息的技术和方法,并根据海冰的声学特性计算海冰的厚度.  相似文献   
216.
深基坑支护设计的弹性抗力有限元法   总被引:1,自引:1,他引:0  
采用弹性抗力有限元方法讨论多支撑锚桩的深坑支护设计问题。该方法与传统的静力平衡法相比有其优越性,能够计算出不同开挖阶段的桩顶位移,桩身弯距随深度的变化,模拟开挖过程,最大限度地协调支护结构与土体的变形关系,并能确定出最小的桩身弯距设计值及各层锚杆的锚固力。并以实例运用该方法对青岛某基坑工程的支护进行了设计,取得了满意效果  相似文献   
217.
随着海洋、湖泊、河流和港口等人类活动逐渐增加,涉海工程产生的水下噪声污染及对海洋生物影响已引起广泛关注。工程建设期环境影响评价中,水下噪声测量逐渐成为海洋监管的要素。水下冲击打桩是工程建设中常见的低频水下脉冲声源,能够传播较远距离。如何规范地开展水下冲击打桩噪声测量至关重要。文章给出了水下冲击打桩噪声的通用测量方法,包括声学指标、测量系统、测量布放、声学测量配置、测量不确定性等,可为海洋工程建设影响评价、海洋生物生态保护等提供技术支撑。  相似文献   
218.
The high-speed supercavitating vehicle (HSSV) utilizes advanced technology that enables an underwater vehicle to reach its unprecedented high speed. The vertical motion control of the HSSV is challenging problem because of its complex dynamics with nonlinear planing force, parametric uncertainties, external disturbances, actuator saturation, and sensor noises. This paper deals with dynamical analysis and a robust H∞ loop-shaping synthesis with modified PID (proportional-integral-derivative) algorithm to control the dive plane maneuver of the HSSV. Typically, the control scheme has the low order structure and provides robustness against dynamic uncertainties, which can be implemented using the bilinear matrix inequality (BMI) optimization of an equivalent Schur formula. Simulation results show that the controlled vehicle system provides good performance and high robustness against uncertainties, ensuring no-overshoot and fast in time-domain responses. In addition, the control algorithm can decouple the dynamic interactions in the multi-input multi-output (MIMO) system, overcoming parametric uncertainty, planing force, and actuator saturation while minimizing the effect of the strong external disturbances and measurement noises.  相似文献   
219.
Strains in the ice cover of a frozen channel, which are caused by a body moving under the ice at a constant speed along the channel, are studied. The channel is of rectangular cross section, the fluid in the channel is inviscid and incompressible. The ice cover is modeled by a thin viscoelastic plate clamped to the channel walls. The underwater body is modeled by a three-dimensional dipole. The intensity of the dipole is related to the speed and size of the underwater body. The problem is considered within the linear theory of hydroelasticity. For small deflections of the ice cover the velocity potential of the dipole in the channel is obtained by the method of images without account for ice deflection in the leading order. The problem of a dipole moving in the channel with rigid walls provides the hydrodynamic pressure on the upper boundary of the channel, which corresponds to the ice cover. This pressure distribution does not depend on the deflection of the ice cover in the leading approximation. The deflections of ice and the strains in the ice cover are independent of time in the coordinate system moving together with the dipole. The problem is solved numerically using the Fourier transform along the channel, the method of normal modes across the channel, and the truncation method for resulting infinite systems of linear equations. It was revealed that the strains in the ice strongly depend on the speed of the dipole with respect to the critical speeds of the hydroelastic waves propagating along the frozen channel. The width of the channel matters even it is much larger than the characteristic length of the ice cover.  相似文献   
220.
A numerical method is proposed to predict the effective wake profiles of high speed underwater vehicles propelled by contra-rotating propellers (CRPs), in which the hydrodynamic effects of the CRPs are simulated by distributed body forces. First, Reynolds-averaged Navier-Stokes (RANS) simulations are conducted for identical body-force distributions in open-water and self-propulsion conditions. The effective wake profiles at the CRP disks are then obtained by subtracting the velocities induced by the body forces in the open water from those induced by the body forces in the self-propulsion condition. The effective wake profiles were then predicted for a generic underwater vehicle with an established CRP design. Next, the hydrodynamic performance of the CRPs in the effective wake was computed using an in-house vortex-lattice code. The potential-flow results agree well with those provided by the RANS simulation under the self-propulsion condition, indicating that the proposed method can predict the effective wake profiles for CRPs with reasonable accuracy. The influences of different wake components on the blade forces were investigated, determining that for CRPs, and especially for the aft propeller, the circumferential wake cannot be neglected in the design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号