首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5116篇
  免费   712篇
  国内免费   701篇
测绘学   505篇
大气科学   645篇
地球物理   1179篇
地质学   2029篇
海洋学   865篇
天文学   25篇
综合类   297篇
自然地理   984篇
  2024年   16篇
  2023年   80篇
  2022年   160篇
  2021年   204篇
  2020年   198篇
  2019年   242篇
  2018年   179篇
  2017年   269篇
  2016年   250篇
  2015年   233篇
  2014年   393篇
  2013年   388篇
  2012年   336篇
  2011年   351篇
  2010年   314篇
  2009年   324篇
  2008年   329篇
  2007年   357篇
  2006年   340篇
  2005年   255篇
  2004年   198篇
  2003年   176篇
  2002年   190篇
  2001年   125篇
  2000年   106篇
  1999年   98篇
  1998年   86篇
  1997年   58篇
  1996年   52篇
  1995年   47篇
  1994年   40篇
  1993年   41篇
  1992年   36篇
  1991年   12篇
  1990年   7篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   9篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1978年   3篇
  1977年   1篇
排序方式: 共有6529条查询结果,搜索用时 296 毫秒
171.
区域生态地球化学评价核心与对策   总被引:30,自引:1,他引:30       下载免费PDF全文
生态地球化学是地学与土壤学、农业、环境学和生态学等多学科交叉融合产生的新学科,是地球化学领域新的发展方向。区域生态地球化学评价是在区域地球化学调查基础上,针对影响流域/区带生态系统安全性的元素异常而开展的一项评价和研究工作。多目标区域地球化学调查获得的海量高精度地球化学数据,可为环境质量评价提供背景值、为土地的质量和生态管护提供地球化学依据;调查还发现了一系列影响流域生态安全性的元素异常,针对异常元素分布特征,区域生态地球化学评价将开展异常元素追踪和成因甄别、生态效应评价和生态系统安全性的预警预测等项评价和研究工作。文章论述了区域地球化学调查成果,介绍了区域地球化学评价的思路,阐述了区域生态地球化学评价的主要问题与对策。  相似文献   
172.
IPCC reports provide a synthesis of the state of the science in order to inform the international policy process. This task is made difficult by the presence of deep uncertainty in the climate problem that results from long time scales and complexity. This paper focuses on how deep uncertainty can be effectively communicated. We argue that existing schemes do an inadequate job of communicating deep uncertainty and propose a simple approach that distinguishes between various levels of subjective understanding in a systematic manner. We illustrate our approach with two examples. To cite this article: M. Kandlikar et al., C. R. Geoscience 337 (2005).  相似文献   
173.
Stream water temperature plays a significant role in aquatic ecosystems where it controls many important biological and physical processes. Reliable estimates of water temperature at the daily time step are critical in managing water resources. We developed a parsimonious piecewise Bayesian model for estimating daily stream water temperatures that account for temporal autocorrelation and both linear and nonlinear relationships with air temperature and discharge. The model was tested at 8 climatically different basins of the USA and at 34 sites within the mountainous Boise River Basin (Idaho, USA). The results show that the proposed model is robust with an average root mean square error of 1.25 °C and Nash–Sutcliffe coefficient of 0.92 over a 2‐year period. Our approach can be used to predict historic daily stream water temperatures in any location using observed daily stream temperature and regional air temperature data.  相似文献   
174.
Most of previous analyses on the active earth pressure were performed in two-dimensional cases using the Mohr-Coulomb (M-C) failure function to describe the soil strength. However, all failures of retained slopes indicate a somewhat three-dimensional (3D) feature, and the M-C function is found to overestimate the tensile strength of cohesive soil. In this work, a kinematic limit analysis–based approach is developed for computing the 3D active earth pressure resulting from cohesive backfills. The concept of tensile strength cutoff is adopted to implement the reduction or elimination of tensile strength from the strength envelope. An extended 3D horn failure mechanism that is associated with the modified strength envelope is developed to characterize the collapse of retained slopes. The resultant of active earth pressure is evaluated from the work rate balance equation and expressed as an unfactored coefficient. The obtained results indicate that less support provided by the wall is required when allowing the existence of soil cohesion and 3D effects and that eliminating the tensile strength can observably increase the active earth pressure, especially for the backfill with a great level of cohesion.  相似文献   
175.
In this paper, we addressed a sensitivity analysis of the snow module of the GEOtop2.0 model at point and catchment scale in a small high‐elevation catchment in the Eastern Italian Alps (catchment size: 61 km2). Simulated snow depth and snow water equivalent at the point scale were compared with measured data at four locations from 2009 to 2013. At the catchment scale, simulated snow‐covered area (SCA) was compared with binary snow cover maps derived from moderate‐resolution imaging spectroradiometer (MODIS) and Landsat satellite imagery. Sensitivity analyses were used to assess the effect of different model parameterizations on model performance at both scales and the effect of different thresholds of simulated snow depth on the agreement with MODIS data. Our results at point scale indicated that modifying only the “snow correction factor” resulted in substantial improvements of the snow model and effectively compensated inaccurate winter precipitation by enhancing snow accumulation. SCA inaccuracies at catchment scale during accumulation and melt period were affected little by different snow depth thresholds when using calibrated winter precipitation from point scale. However, inaccuracies were strongly controlled by topographic characteristics and model parameterizations driving snow albedo (“snow ageing coefficient” and “extinction of snow albedo”) during accumulation and melt period. Although highest accuracies (overall accuracy = 1 in 86% of the catchment area) were observed during winter, lower accuracies (overall accuracy < 0.7) occurred during the early accumulation and melt period (in 29% and 23%, respectively), mostly present in areas with grassland and forest, slopes of 20–40°, areas exposed NW or areas with a topographic roughness index of ?0.25 to 0 m. These findings may give recommendations for defining more effective model parameterization strategies and guide future work, in which simulated and MODIS SCA may be combined to generate improved products for SCA monitoring in Alpine catchments.  相似文献   
176.
The restoration of meadowland using the pond and plug technique of gully elimination was performed in a 9‐mile segment along Last Chance Creek, Feather River Basin, California, in order to rehabilitate floodplain functions such as mitigating floods, retaining groundwater, and reducing sediment yield associated with bank erosion and to significantly alter the hydrologic regime. However, because the atmospheric and hydrological conditions have evolved over the restoration period, it was difficult to obtain a comprehensible evaluation of the impact of restoration activities by means of field measurements. In this paper, a new use of physically based models for environmental assessment is described. The atmospheric conditions over the sparsely gauged Last Chance Creek watershed (which does not have any precipitation or weather stations) during the combined historical critical dry and wet period (1982–1993) were reconstructed over the whole watershed using the atmospheric fifth‐generation mesoscale model driven with the US National Center for Atmospheric Research and US National Center for Environmental Prediction reanalysis data. Using the downscaled atmospheric data as its input, the watershed environmental hydrology (WEHY) model was applied to this watershed. All physical parameters of the WEHY model were derived from the existing geographic information system and satellite‐driven data sets. By comparing the prerestoration and postrestoration simulation results under the identical atmospheric conditions, a more complete environmental assessment of the restoration project was made. Model results indicate that the flood peak may be reduced by 10–20% during the wet year and the baseflow may be enhanced by 10–20% during the following dry seasons (summer to fall) in the postrestoration condition. The model results also showed that the hydrologic impact of the land management associated with the restoration mitigates bank erosion and sediment discharge during winter storm events. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
177.
For civil engineering structures with a tightness role, structural permeability is a key issue. In this context, this paper presents a new proposition of a numerical modelling of leakage rate through a cracked concrete structure undergoing mode I cracking. The mechanical state of the material, considered in the framework of continuum mechanics based on finite element modelling, is described by means of the stress‐based nonlocal damage model which takes into account the stress state and provides realistic local mechanical fields. A semi‐discrete method based on the strong discontinuity approach to estimate crack opening is then considered in the post‐treatment phase. Using a Poiseuille's like relation, the coupling between the mechanical state of the material and its dry gas conductivity is performed. For validation purposes, an original experimental campaign is conducted on a dry concrete disc loaded in a splitting setup. During the loading, gas conductivity and digital image correlation analysis are performed. The comparison with the 3D experimental mechanical global response highlights the performance of the mechanical model. The comparison between crack openings measured by digital image correlation and estimated by the strong discontinuity method shows a good agreement. Finally, the results of the semi‐discrete approach coupled with the gas conductivity compared with experimental data show a good estimation of the structural conductivity. Consequently, if the mechanical problem is well modelled at the global scale, then the proposed approach provides good estimation of gas conductivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
178.
本文在对国内外遥感图像分类方法充分研究分析的基础上,选择决策树分类法对大屯矿区的Landsat 8遥感图像进行分类研究。选取样本提取并分析研究区典型地类光谱特征曲线,依据光谱曲线特征和归一化植被指数建立了土地利用分类决策树模型,通过反复试验和修正,筛选出适宜大屯矿区地物分类的决策树最优阈值,对研究区进行分类和精度评价,最后通过分类结果对研究区的水体污染状况进行简要分析。  相似文献   
179.
区域生态风险评价是对各种生态风险及环境问题进行评价和管理的重要手段。针对雅安地震灾区特殊的自然地理及生态环境特征,选取芦山县为研究对象,采用遥感、GIS及SPSS统计分析的方法,通过风险源、风险受体、暴露和易损性分析,建立生态风险综合评价模型,划分生态风险区类型,进而提出生态风险管理对策。结果表明:1)微度和低度生态风险区集中分布在高海拔的森林及草地生态系统,该区生物多样性丰富,抗干扰能力较强,地质灾害及人类活动影响较小;2)中度和高度生态风险区具有沿农田及建设用地生态系统集聚分布的特征,该区地质灾害频繁,地壳活动性较强,生态系统抵抗灾害的能力较差。研究结果可为地震灾区防御、规避风险及安全选址提供科学依据。  相似文献   
180.
矢量线要素数据来源多样,细节层次不一,限制了已有匹配算法正确率的提高,同时也给算法评价带来困难。化简可以减少线要素细节层次,提取其主要形态,据此提出一种基于线要素动态化简的匹配算法评价新方法。对不同匹配算法采用相同数据,在相同化简算法支撑下进行匹配,从而实现对不同匹配算法的评价。首先,阐述动态化简方法提取线要素主要形态的过程;其次,利用动态化简分别辅助4种已有匹配算法,获取每个匹配算法的最优匹配正确率;最后,将4种匹配算法的原始匹配结果与加入动态化简后的匹配结果进行对比,分析化简对匹配结果的影响,并把该影响运用到匹配算法的比较和评价中来。其中,1通过匹配正确率变化、误匹配等分析了匹配算法的数据适用性;2通过化简比例系数K变化时新增匹配数量的统计,评价了匹配算法对线要素局部细节的敏感程度并提出该指标的量化方法;3结合匹配算法采用的匹配相似度指标对其作出评价。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号