首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   17篇
  国内免费   31篇
测绘学   2篇
大气科学   3篇
地球物理   39篇
地质学   66篇
海洋学   56篇
综合类   3篇
自然地理   11篇
  2022年   9篇
  2021年   11篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   8篇
  2014年   4篇
  2013年   6篇
  2012年   5篇
  2011年   6篇
  2010年   4篇
  2009年   9篇
  2008年   10篇
  2007年   7篇
  2006年   14篇
  2005年   11篇
  2004年   9篇
  2003年   10篇
  2002年   8篇
  2001年   4篇
  2000年   4篇
  1999年   7篇
  1998年   1篇
  1997年   7篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   4篇
  1984年   1篇
  1982年   2篇
排序方式: 共有180条查询结果,搜索用时 15 毫秒
121.
Most terrestrial allochthonous organic matter enters river networks through headwater streams during high flow events. In headwaters, allochthonous inputs are substantial and variable, but become less important in streams and rivers with larger watersheds. As allochthonous dissolved organic matter (DOM) moves downstream, the proportion of less aromatic organic matter with autochthonous characteristics increases. How environmental factors converge to control this transformation of DOM at a continental scale is less certain. We hypothesized that the amount of time water has spent travelling through surface waters of inland systems (streams, rivers, lakes, and reservoirs) is correlated to DOM composition. To test this hypothesis, we used established river network scaling relationships to predict relative river network flow-weighted travel time (FWTT) of water for 60 stream and river sites across the contiguous United States (3090 discrete samples over 10 water years). We estimated lentic contribution to travel times with upstream in-network lake and reservoir volume. DOM composition was quantified using ultraviolet and visible absorption and fluorescence spectroscopy. A combination of FWTT and lake and reservoir volume was the best overall predictor of DOM composition among models that also incorporated discharge, specific discharge, watershed area, and upstream channel length. DOM spectral slope ratio (R2 = 0.77) and Freshness Index (R2 = 0.78) increased and specific ultraviolet absorbance at 254 nm (R2 = 0.68) and Humification Index (R2 = 0.44) decreased across sites as a function of FWTT and upstream lake volume. This indicates autochthonous-like DOM becomes continually more dominant in waters with greater FWTT. We assert that river FWTT can be used as a metric of the continuum of DOM composition from headwaters to rivers. The nature of the changes to DOM composition detected suggest this continuum is driven by a combination of photo-oxidation, biological processes, hydrologically varying terrestrial subsidies, and aged groundwater inputs.  相似文献   
122.
Peatlands play an important role in the global carbon cycle, and loss of dissolved organic carbon (DOC) has been shown to be important for peatland carbon budgets. The objective of this study was to determine how net production and export of DOC from a northern peatland may be affected by disturbance such as drainage and climate change. The study was conducted at a poor fen containing several pool–ridge complexes: (1) control site–no water table manipulation; (2) experimental site–monitored for one season in a natural state and then subjected to a water table drawdown for 3 years; (3) drained site–subjected to a water table drawdown 9 years prior to monitoring. The DOC concentration was measured in pore water along a microtopographic gradient at each site (hummock, lawn and hollow), in standing water in pools, and in discharge from the experimental and drained sites. The initial water table drawdown released ~3 g of carbon per square metre in the form of DOC, providing a large pulse of DOC to downstream ecosystems. This value, however, represents only 1–9% of ecosystem respiration at this site. Seasonal losses of DOC following drainage were 8–11 g of carbon per square metre, representing ~17% of the total carbon exchange at the experimental study site. Immediately following water table drawdown, DOC concentrations were elevated in pore water and open water pools. In subsequent seasons, DOC concentration in the pool declined, but remained higher than the control site even 11 years after water‐table drawdown. This suggests continued elevated net DOC production under lower water table conditions likely related to an increase in vegetation biomass and larger water table fluctuations at the experimental and drained sites. However, the increase in concentration was limited to initially wet microforms (lawns and hollows) reflecting differences in vegetation community changes, water table and soil subsidence along the microtopographic gradient. Copyright © 2008 John Wiley & Sons, Ltd and Her Majesty the Queen in right of Canada.  相似文献   
123.
Concentrations of dissolved nutrients (NO3, PO4, Si), germanium species, arsenic species, tin, barium, dimethylsulfide and related parameters were measured along the salinity gradient in Charlotte Harbor. Phosphate enrichment from the phosphate industry on the Peace River promotes a productive diatom bloom near the river mouth where NO3 and Si are completely consumed. Inorganic germanium is completely depleted in this bloom by uptake into biogenic opal. The GeSi ratio taken up by diatoms is about 0·7 × 10?6, the same as that provided by the river flux, confirming that siliceous organisms incorporate germanium as an accidental trace replacement for silica. Monomethylgermanium and dimethylgermanium concentrations are undetectable in the Peace River, and increase linearly with increasing salinity to the seawater end of the bay, suggesting that these organogermanium species behave conservatively in estuaries, and are neither produced nor consumed during estuarine biogenic opal formation or dissolution. Inorganic arsenic displays slight removal in the bloom. Monomethylarsenic is produced both in the bloom and in mid-estuary, while dimethylarsenic is conservative in the bloom but produced in mid-estuary. The total production of methylarsenicals within the bay approximately balances the removal of inorganic arsenic, suggesting that most biological arsenic uptake in the estuary is biomethylated and released to the water column. Dimethylsulfide increases with increasing salinity in the estuary and shows evidence of removal, probably both by degassing and by microbial consumption. An input of DMS is observed in the central estuary. The behavior of total dissolvable tin shows no biological activity in the bloom or in mid-estuary, but does display a low-salinity input signal that parallels dissolved organic material, perhaps suggesting an association between tin and DOM. Barium displays dramatic input behavior at mid-salinities, probably due to slow release from clays deposited in the harbor after catastrophic phosphate slime spills into the Peace River.  相似文献   
124.
The stable carbon isotope composition of particulate organic carbon (δ13CPOC) and naturally occurring long-lived radionuclide 226Ra (T1/2=1600 a) were applied to study the variations of upper ocean (<100 m) carbon dynamics in response to sea ice melting in Prydz Bay, East Antarctica during austral summer 2006. Surface δ13CPOC values ranged from −27.4‰ to −19.0‰ and generally decreased from inner bay (south of 67°S) toward the Antarctic Divergence. Surface water 226Ra activity concentration ranged from 0.92 to 2.09 Bq/m3 (average 1.65±0.32 Bq/m3, n=20) and increased toward the Antarctic Divergence, probably reflecting the influence of 226Ra-depleted meltwater and upwelled 226Ra-replete deep water. The fraction of meltwater, fi, was estimated from 226Ra activity concentration and salinity using a three-component (along with Antarctic Summer Surface Water, and Prydz Bay Deep Water) mixing model. Although the fraction of meltwater is relatively minor (1.6–11.9%, average 4.1±2.7%, n=20) for the surface waters (sampled at ~6 m), a positive correlation between surface δ13CPOC and fi13CPOC=0.94×fi−28.44, n=20, r2=0.66, p<0.0001) was found, implying that sea ice melting may have contributed to elevated δ13CPOC values in the inner Prydz Bay compared to the open oceanic waters. This is the first time for a relationship between δ13CPOC and meltwater fraction to be reported in polar oceans to our knowledge. We propose that sea ice melting may have affected surface ocean δ13CPOC by enhancing water column stability and providing a more favorable light environment for phytoplankton photosynthesis, resulting in drawdown of seawater CO2 availability, likely reducing the magnitude of isotope fractionation during biological carbon fixation. Our results highlight the linkage of ice melting and δ13CPOC, providing insights into understanding the carbon cycling in the highly productive Antarctic waters.  相似文献   
125.
吴艳宏  邴海健 《地质论评》2012,58(1):106-114
生态地球化学是生态学和地球化学相结合的学科,研究自然界中化学、物理、地质和生物过程,以及这些过程之间的相互作用及其对生态系统发生、发展所产生的影响,具体而言生态地球化学通过化学物质在生态系统中的分布、分配、迁移、转化规律研究,评价生态系统状态及发展方向.生态地球化学虽然形成较晚,西方科学家甚至很少用“生态地球化学”这一...  相似文献   
126.
The accumulation and retention of 241Am by the pelagic tunicate Oikopleura dioica were examined using laboratory cultures and radiotracer methodology. Animals (i.e., trunks and tails) and discarded empty houses accumulated Am from seawater, giving volume/volume concentration factors of 59±8 and 10±1, respectively. The half-time for retention of Am in empty labelled houses transferred to non-contaminated seawater was 29 h; the retention half-time of Am in houses discarded by larvaceans feeding on Am-labelled diatoms was 219 h; the half-time of Am in fecal pellets produced by animals feeding on a monospecific diet of diatoms was 134 h, and 247 h for fecal pellets from animals fed a mixed diet. Approximately 30% of filtered cells remained in houses after the houses were discarded. Sinking rates of discarded houses and fecal pellets were found to vary with temperature and size, ranging from 26–157 m day?1 (house) and from 25–166 m day?1 (fecal pellets). The ubiquity and abundance of appendicularians, together with their prodigious production of houses (e.g., 10±2 houses day?1 at 17°C for each experimental animal) point to their potential significance in the vertical transport of Am, and probably other reactive metals, to intermediate depths in the ocean.  相似文献   
127.
中国区域碳循环研究进展与展望   总被引:26,自引:2,他引:24  
中国陆地和海洋生态系统的区域碳循环在全球碳循环过程中占有重要地位。目前,中国陆地生态系统在全球碳循环中的地位和作用已有比较深入的研究,而中国边缘海系统碳循环研究相对薄弱。简要回顾中国碳循环(以现代过程的描述为主)的研究动态,重点阐述中国边缘海碳循环研究概况及CO2的海-气交换、有机碳循环、颗粒有机碳的输出、河流的输运等海洋碳循环过程的关键科学问题。在汇总补充及数据更新的基础上勾画了中国区域碳循环框架。我们认为,中国的区域碳循环过程尚有诸多未知量和不确定性,缺乏把陆、海、气作为一个系统的综合研究,海洋生态系统碳循环研究尤其需要加强。中国边缘海的碳循环研究应当围绕CO2的汇源过程这一碳循环的中心问题,深入开展边缘海碳的生物地球化学及其与大气CO2的耦合作用等方面的研究。  相似文献   
128.
129.
The environmental and biogeochemical information extracted from the sediments collected from the northern shelf of the South China Sea shows that terrigenous inputs of phosphorus into the sea remained relatively constant, and the variation of phosphorus contents at different depths was caused by climatic and environmental changes. The findings also suggest that the vertical variation of phosphorus content was opposite to those of calcium carbonate and cadmium, and the functional correlation between CO2 and PO 4 3− in seawater was given by calculating the chemical equilibrium, indicating that the accumulation of marine sedimentary phosphorus may have something to do with the variation of atmospheric CO2. The decreased phosphorus accumulation as well as the correspondingly-increased calcium carbonate content might be one of key factors causing glacial atmospheric CO2 decline.  相似文献   
130.
趋磁细菌——生物地球化学作用的范例   总被引:2,自引:1,他引:2  
趋磁细菌(MB)属变形菌纲,为简单的原核细胞.它的最大特征是体内长有磁小体(MSs),沿地磁线运动.MSs由膜及其内部的无机矿物或铁素(含铁蛋白质)组成,无机矿物有铁的氧化物系列或铁的硫化物系列,它们是MB的代谢产物,也是最早发现的有机界面生物矿化作用的范例.文章在广泛调查的基础上,选择源于黄土剖面S0,S1和S5古土壤层中的MB为研究重点,对它们进行了形态与生理生化特征的观察与检测,生命元素和生命小分子脂肪酸的色质谱与能谱测定,并在没有添加营养和铁源的条件下,开展了MSs的生长特点及它对环境磁性影响的模拟实验.黄土中的MB以杆状为主,杆状的长与宽之比随温度的降低而变大.MSs中的矿物为铁的氧化物系列,在较低温度并有一定温度差(8~18℃)的情况下生长较好.菌体老化后菌膜发生自溶,MSs脱落到体外,可能成为沉积物中细粒磁性物质的重要组分.因此它们在古地磁与古气候记录上具有重要的意义.通过对不同级别生物分子的了解与测试,MSs的矿物成分与形成机理研究,以及MSs中磁铁矿的铁和氧同位素测定,可进一步认识MB在沉积物中的生物地球化学作用.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号