首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3622篇
  免费   568篇
  国内免费   393篇
测绘学   841篇
大气科学   250篇
地球物理   1182篇
地质学   1352篇
海洋学   465篇
天文学   32篇
综合类   208篇
自然地理   253篇
  2024年   7篇
  2023年   23篇
  2022年   71篇
  2021年   97篇
  2020年   120篇
  2019年   135篇
  2018年   111篇
  2017年   174篇
  2016年   140篇
  2015年   151篇
  2014年   190篇
  2013年   257篇
  2012年   235篇
  2011年   268篇
  2010年   177篇
  2009年   239篇
  2008年   255篇
  2007年   254篇
  2006年   254篇
  2005年   200篇
  2004年   184篇
  2003年   174篇
  2002年   110篇
  2001年   113篇
  2000年   119篇
  1999年   91篇
  1998年   64篇
  1997年   69篇
  1996年   63篇
  1995年   42篇
  1994年   47篇
  1993年   30篇
  1992年   25篇
  1991年   15篇
  1990年   20篇
  1989年   16篇
  1988年   10篇
  1987年   5篇
  1986年   10篇
  1985年   4篇
  1984年   7篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有4583条查询结果,搜索用时 15 毫秒
91.
During strong ground motion it is expected that extended structures (such as bridges) are subjected to excitation that varies along their longitudinal axis in terms of arrival time, amplitude and frequency content, a fact primarily attributed to the wave passage effect, the loss of coherency and the role of local site conditions. Furthermore, the foundation interacts with the soil and the superstructure, thus significantly affecting the dynamic response of the bridge. A general methodology is therefore set up and implemented into a computer code for deriving sets of appropriately modified time histories and spring–dashpot coefficients at each support of a bridge with account for spatial variability, local site conditions and soil–foundation–superstructure interaction, for the purposes of inelastic dynamic analysis of RC bridges. In order to validate the methodology and code developed, each stage of the proposed procedure is verified using recorded data, finite‐element analyses, alternative computer programs, previous research studies, and closed‐form solutions wherever available. The results establish an adequate degree of confidence in the use of the proposed methodology and code in further parametric analyses and seismic design. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
92.
The methodology for dealing with spatial variability of ground motion, site effects and soil–structure interaction phenomena in the context of inelastic dynamic analysis of bridge structures, and the associated analytical tools established and validated in a companion paper are used herein for a detailed parametric analysis, aiming to evaluate the importance of the above effects in seismic design. For a total of 20 bridge structures differing in terms of structural type (fundamental period, symmetry, regularity, abutment conditions, pier‐to‐deck connections), dimensions (span and overall length), and ground motion characteristics (earthquake frequency content and direction of excitation), the dynamic response corresponding to nine levels of increasing analysis complexity was calculated and compared with the ‘standard’ case of a fixed base, uniformly excited, elastic structure for which site effects were totally ignored. It is concluded that the dynamic response of RC bridges is indeed strongly affected by the coupling of the above phenomena that may adversely affect displacements and/or action effects under certain circumstances. Evidence is also presented that some bridge types are relatively more sensitive to the above phenomena, hence a more refined analysis approach should be considered in their case. Copyright @ 2003 John Wiley & Sons, Ltd.  相似文献   
93.
Shear‐wall dominant multistorey reinforced concrete structures, constructed by using a special tunnel form technique are commonly built in countries facing a substantial seismic risk, such as Chile, Japan, Italy and Turkey. In spite of their high resistance to earthquake excitations, current seismic code provisions including the Uniform Building Code (International Conference of Building Officials, Whittier, CA, 1997) and the Turkish Seismic Code (Specification for Structures to be Built in Disaster Areas, Ankara, Turkey, 1998) present limited information for their design criteria. In this study, consistency of equations in those seismic codes related to their dynamic properties are investigated and it is observed that the given empirical equations for prediction of fundamental periods of this specific type of structures yield inaccurate results. For that reason, a total of 80 different building configurations were analysed by using three‐dimensional finite‐element modelling and a set of new empirical equations was proposed. The results of the analyses demonstrate that given formulas including new parameters provide accurate predictions for the broad range of different architectural configurations, roof heights and shear‐wall distributions, and may be used as an efficient tool for the implicit design of these structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
94.
Results of a detailed statistical study of constant relative strength inelastic displacement ratios to estimate maximum lateral inelastic displacement demands on existing structures from maximum lateral elastic displacement demands are presented. These ratios were computed for single‐degree‐of‐freedom systems with different levels of lateral strength normalized to the strength required to remain elastic when subjected to a relatively large ensemble of recorded earthquake ground motions. Three groups of soil conditions with shear wave velocities higher than 180m/s are considered. The influence of period of vibration, level of lateral yielding strength, site conditions, earthquake magnitude, distance to the source, and strain‐hardening ratio are evaluated and discussed. Mean inelastic displacement ratios and those associated with various percentiles are presented. A special emphasis is given to the dispersion of these ratios. It is concluded that distance to the source has a negligible influence on constant relative strength inelastic displacement ratios. However, for periods smaller than 1s earthquake magnitude and soil conditions have a moderate influence on these ratios. Strain hardening decreases maximum inelastic displacement at a fairly constant rate depending on the level of relative strength for periods of vibration longer than about 1.0s while it decreases maximum inelastic displacement non‐linearly as the period of vibration shortens and as the relative‐strength ratio increases for periods of vibration shorter than 1.0s. Finally, results from non‐linear regression analyses are presented that provide a simplified expression to be used to approximate mean inelastic displacement ratios during the evaluation of existing structures built on firm sites. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
95.
In the new trend of seismic design methodology, the static pushover analysis is recommended for simple or regular structures whilst the time‐history analysis is recommended for complex structures. To this end, the applicable range of the pushover analysis has to be clarified. This study aims at investigating the applicability of pushover analysis to multi‐span continuous bridge systems with thin‐walled steel piers. The focus is concentrated on the response demand predictions in longitudinal or transverse directions. The pushover analysis procedure for such structures is firstly summarized and then parametric studies are carried out on bridges with different types of superstructure‐pier bearing connections. The considered parameters, such as piers' stiffness distribution and pier–0.5ptdeck stiffness ratio, are varied to cover both regular and irregular structures. Finally, the relation of the applicability of pushover analysis to different structural formats is demonstrated and a criterion based on the higher modal contribution is proposed to quantitatively specify the applicable range. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
96.
非开挖导向钻进实际轨迹的控制设计   总被引:4,自引:0,他引:4  
非开挖导向钻进技术,具有施工速度快、适用范围广等优点,得到了广泛的应用。在实际钻进中,由于钻进在地下的不确定性,影响了导向钻进的顺利进行。到得钻进中当前点的顶角、方位角和孔深,通过均角全距法原理,可以近似地描绘出当前钻孔的空间实际轨迹,并确定钻头的位置。应用这一原理,同时运用VisualBasic语言和AutoCAD绘图工具相结合的方法,编制一套应用程序,可以直接绘制出当前钻孔轨迹,并可实现对钻孔轨迹的调控,从而保证导向钻进的顺利进行。  相似文献   
97.
平面散点集Delaunay三角剖分的一种高效方法   总被引:12,自引:3,他引:12  
以平面散点集逐点插入的Delaunay三角化的方法为基础,在三角化过程中采用一定策略,将其改进成为一种简单易行而高效的方法,能够适应包括多岛、多连通域等复杂情况的各种边界,能够生成贴体的三角网,网格能够保证符合Delaunay法则。  相似文献   
98.
面向对象的时空概念建模方法   总被引:4,自引:0,他引:4  
在面向对象技术的基础上,把地理信息的时空特征与对象模型融合到一起,产生了语义丰富的时空扩展对象模型,以支持包含时空信息的系统需求分析和设计。  相似文献   
99.
The design of a drainage system for a roofing slate quarry was implemented by the enhancement of discharge peak estimation, and the uncertainty inevitably associated with the engineering model was reduced.

The development of a topographical, geological, and vegetation cover database developed from a Geographical Information System (GIS) allowed for the definition of the drainage network for a hydraulic system, along with the calculation of the runoff coefficient. This is applied to the digital model of accumulated flow (DMF) as a weight correction coefficient, using a matrix-based model at 5×5 m resolution. The new digital model of corrected accumulated flow (DMCF) is the result of combining the thematic maps with the map of slope <3%, which was previously created from the slope model. It is demonstrated that this new model allows to apply the “Rational Method” on cartographic units defined by the GIS.

The DMCF is compared with other traditional applications of the Rational Method based on the calculation of the discharge peak considering: (1) the drainage basin as a single watershed or (2) defining an average runoff coefficient in each sub-watershed. Both approaches have bigger discharge peaks than those obtained by the DMCF since the slope, lithology, and vegetation cover have average values, and the runoff coefficient is poorly defined, increasing the uncertainty in the discharge peak.  相似文献   

100.
小湾电站高边坡系统锚固与排水的优化设计方法   总被引:1,自引:0,他引:1  
据小湾电站地下厂房进水口开挖高边坡的岩体结构与工程地质特征,采用基于结构面网络模拟的随机楔体稳定分析方法对边坡的稳定性进行了三维分析。进一步运用风险分析理论对边坡系统锚杆与预应力锚索的布置进行了优化设计,最后运用结构面网络模拟理论对排水方案进行了优化设计。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号