首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3927篇
  免费   874篇
  国内免费   639篇
测绘学   88篇
大气科学   217篇
地球物理   2890篇
地质学   1105篇
海洋学   601篇
天文学   8篇
综合类   183篇
自然地理   348篇
  2024年   15篇
  2023年   58篇
  2022年   134篇
  2021年   157篇
  2020年   207篇
  2019年   199篇
  2018年   187篇
  2017年   194篇
  2016年   183篇
  2015年   234篇
  2014年   294篇
  2013年   242篇
  2012年   252篇
  2011年   275篇
  2010年   255篇
  2009年   254篇
  2008年   254篇
  2007年   280篇
  2006年   235篇
  2005年   210篇
  2004年   197篇
  2003年   172篇
  2002年   154篇
  2001年   112篇
  2000年   116篇
  1999年   103篇
  1998年   97篇
  1997年   89篇
  1996年   77篇
  1995年   51篇
  1994年   38篇
  1993年   33篇
  1992年   22篇
  1991年   14篇
  1990年   12篇
  1989年   9篇
  1988年   5篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1979年   2篇
  1954年   1篇
排序方式: 共有5440条查询结果,搜索用时 31 毫秒
91.
目前有一些关于多自由度结构体系的地震响应中响应峰值按降序(即由大到小的顺序)排列时的峰值统计性质的研究。本文对这些研究中的概率方法提出一些改进。由于这些改进,概率谱叠加方法在实际应用中就变得更准确和实用。本文以五层的结构模型为例,计算其在埃尔森特罗(1940)地震激励下的响应,并与时程分析结果进行比较。结果表明,改进的概率谱叠加方法能够谁确的计算较高几阶重要响应峰值的幅值。  相似文献   
92.
基于脉冲频响函数的MATLAB动力方程求解方法   总被引:3,自引:0,他引:3  
提出一种基于脉冲频响函数并利用MATLAB求解的方法,由于脉冲频响函数利用卷积公式进行动力微分方法计算,因此,从理论上讲,它适合于任意外力下的动力方程求解,同时,MATAL又提供了卷积函数conv,所以,在MATLAB下求解动力方程将变得十分容易。  相似文献   
93.
美国城市搜索与救援体系是世界上最完善的体系之一,多年来在城市救灾和应对突发事件中发挥了重要作用,减轻了生命和财产的损失。文章概述了美国城市搜索与救援体系的组成、任务、运作原则和管理机构及支援机构。  相似文献   
94.
1 Background of the new national seismic zoning map The policy of seismic disaster mitigation in the Chinese mainland is prevention first. According to the law, the earthquake design for ordinary structures must fit the demand of national seismic zoning map. Seismic zoning map is the basis of the earthquake design (TANG, 1998; WU, et al, 1998). The seismic zoning map must be updated with the progress in methodology and accumula-tion of the data. There are three generations of national seis…  相似文献   
95.
Decoupled seismic analysis of an earth dam   总被引:2,自引:0,他引:2  
The seismic stability of an earth dam is evaluated via the decoupled displacement analysis using the accelerograms obtained by ground response analysis to compute the earthquake-induced displacements. The response analysis of the dam is carried out under both 1D and 2D conditions, incorporating the non-linear soil behaviour through the equivalent linear method. Ten artificial and five real accelerograms were used as input motions and four different depths were assumed for the bedrock.1D and 2D response analyses were in a fair agreement with the exception of the top third of the dam where only a 2D modelling of the problem could ensure that the acceleration field is properly described. The acceleration amplification ratio obtained in the 2D analyses was equal to about 2 in all the cases considered, consistently with data from real case histories.The maximum permanent displacements computed by the sliding block analysis were small, being less than 10% of the service freeboard; a satisfactory performance of the dam can then be envisaged for any of the seismic scenarios considered in the analyses.  相似文献   
96.
Scattering of plane harmonic waves by a three‐dimensional basin of arbitrary shape embedded within elastic half‐space is investigated by using an indirect boundary integral equation approach. The materials of the basin and the half‐space are assumed to be the most general anisotropic, homogeneous, linearly elastic solids without any material symmetry (i.e. triclinic). The unknown scattered waves are expressed in terms of three‐dimensional triclinic time harmonic full‐space Green's functions. The results have been tested by comparing the surface response of semi spherical isotropic and transversely isotropic basins for which the numerical solutions are available. Surface displacements are presented for a semicircular basin subjected to a vertical incident plane harmonic pseudo‐P‐, SV‐, or SH‐wave. These results are compared with the motion obtained for the corresponding equivalent isotropic models. The results show that presence of the basin may cause significant amplification of ground motion when compared to the free‐field displacements. The peak amplitude of the predominant component of surface motion is smaller for the anisotropic basin than for the corresponding isotropic one. Anisotropic response may be asymmetric even for symmetric geometry and incidence. Anisotropic surface displacement generally includes all three components of motion which may not be the case for the isotropic results. Furthermore, anisotropic response strongly depends upon the nature of the incident wave, degree of material anisotropy and the azimuthal orientation of the observation station. These results clearly demonstrate the importance of anisotropy in amplification of surface ground motion. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
97.
The non‐linear analysis of single‐degree‐of‐freedom (SDOF) systems provides the essential background information for both strength‐based design and displacement‐based evaluation/design methodologies through the development of the inelastic response spectra. The recursive solution procedure called the piecewise exact method, which is efficiently used for the response analysis of linear SDOF systems, is re‐formulated in this paper in a unified format to analyse the non‐linear SDOF systems with multi‐linear hysteresis models. The unified formulation is also capable of handling the P‐delta effect, which generally involves the negative post‐yield stiffness of the hysteresis loops. The attractiveness of the method lies in the fact that it provides the exact solution when the loading time history is composed of piecewise linear segments, a condition that is perfectly satisfied for the earthquake excitation. Based on simple recursive relationships given for positive, negative and zero effective stiffnesses, the unified form of the piecewise exact method proves to be an extremely powerful and probably the best tool for the SDOF inelastic time‐history and response spectrum analysis including the P‐delta effect. A number of examples are presented to demonstrate the implementation of the method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
98.
This article documents the analytical study and feasibility of placing a tuned mass damper in the form of a limber rooftop moment frame atop relatively stiff structures to reduce seismic acceleration response. Six existing structures were analytically studied using a suite of time history and response spectra records. The analyses indicate that adding mass in conjunction with a limber frame results in an increase in the fundamental period of each structure. The fundamental period increase generally results in a decrease in seismic acceleration response for the same time history and response spectra records. Owing to the limber nature of the rooftop frames, non‐linear analysis methods were required to evaluate the stability of the rooftop tuned mass damper frame. The results indicate the addition of a rooftop tuned mass damper frame reduces the seismic acceleration response for most cases although acceleration response can increase if the rooftop frame is not tuned to accommodate the specific structure's dynamic behaviour and localized soil conditions. Appropriate design of the rooftop tuned mass damper frame can result in decreased seismic acceleration response. This translates to safer structures if used as a retrofit measure or a more economical design if used for new construction. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
99.
This paper presents a statistical performance analysis of a semi‐active structural control system for suppressing the vibration response of building structures during strong seismic events. The proposed semi‐active mass damper device consists of a high‐frequency mass damper with large stiffness, and an actively controlled interaction element that connects the mass damper to the structure. Through actively modulating the operating states of the interaction elements according to pre‐specified control logic, vibrational energy in the structure is dissipated in the mass damper device and the vibration of the structure is thus suppressed. The control logic, categorized under active interaction control, is defined directly in physical space by minimizing the inter‐storey drift of the structure to the maximum extent. This semi‐active structural control approach has been shown to be effective in reducing the vibration response of building structures due to specific earthquake ground motions. To further evaluate the control performance, a Monte Carlo simulation of the seismic response of a three‐storey steel‐framed building model equipped with the proposed semi‐active mass damper device is performed based on a large ensemble of artificially generated earthquake ground motions. A procedure for generating code‐compatible artificial earthquake accelerograms is also briefly described. The results obtained clearly demonstrate the effectiveness of the proposed semi‐active mass damper device in controlling vibrations of building structures during large earthquakes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
100.
A predictive instantaneous optimal control (PIOC) algorithm is proposed for controlling the seismic responses of elastic structures. This algorithm compensates for the time delay that happens in practical control applications by predicting the structural response over a period that equals the time delay, and by substituting the predicted response in the instantaneous optimal control (IOC) algorithm. The unique feature of this proposed PIOC algorithm is that it is simple and at the same time compensates for the time delay very effectively. Numerical examples of single degree of freedom structures are presented to compare the performance of PIOC and IOC systems for various time delay magnitudes. Results show that a time delay always causes degradation of control efficiency, but PIOC can greatly reduce this degradation compared to IOC. The effects of the structure's natural periods and the choice of control gains on the degradation induced by the time delay are also analyzed. Results show that shorter natural periods and larger control gains are both more sensitive and more serious to the degradation of control efficiency. Finally, a practical application of PIOC is performed on a six‐story moment‐resisting steel frame. It is demonstrated that PIOC contributes significantly to maintain stability in multiple degree of freedom structures, and at the same time PIOC has a satisfactory control performance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号