首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1657篇
  免费   332篇
  国内免费   548篇
测绘学   30篇
大气科学   673篇
地球物理   566篇
地质学   377篇
海洋学   491篇
天文学   69篇
综合类   62篇
自然地理   269篇
  2024年   10篇
  2023年   16篇
  2022年   38篇
  2021年   55篇
  2020年   85篇
  2019年   86篇
  2018年   70篇
  2017年   115篇
  2016年   89篇
  2015年   100篇
  2014年   141篇
  2013年   188篇
  2012年   109篇
  2011年   108篇
  2010年   90篇
  2009年   147篇
  2008年   125篇
  2007年   119篇
  2006年   117篇
  2005年   99篇
  2004年   97篇
  2003年   77篇
  2002年   67篇
  2001年   55篇
  2000年   59篇
  1999年   44篇
  1998年   53篇
  1997年   36篇
  1996年   32篇
  1995年   15篇
  1994年   24篇
  1993年   16篇
  1992年   9篇
  1991年   8篇
  1990年   4篇
  1989年   2篇
  1988年   11篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
排序方式: 共有2537条查询结果,搜索用时 15 毫秒
41.
博州近45年气温变化特征分析   总被引:5,自引:0,他引:5  
用博州4个气象站1960~2004年的月平均气温资料,分析了博州3个气候区域近45a来的气温变化特征.结果表明:45a来博州地区气候逐渐变暖,特剐是上世纪80年代中期以来增温尤为明显,中部博河河谷区及东部平原增温幅度明显大于博州山区.博州山区的夏季气温略有下降.上世纪60年代异常冷冬、凉夏事件最多,80年代异常冷暖事件最少.  相似文献   
42.
近百年中国东部夏季降水的时空变率   总被引:4,自引:0,他引:4  
利用中国东部25°N以北28个站1880-1999年夏季季降水序列,用旋转复经验正交函数(RCEOF)方法,研究了中国东部地区百年干湿的时空演变规律。结果表明,夏季降水空间变率大值区依次为:长江中下游地区、淮河流域、江南、华北、西南及东北。除西南外的5个关键区大体上反映了从6月到8月夏季雨带自南向北椎进所滞留的地区。旋转空间位相分布揭示了长江中下游地区、江南、东北的旱涝异常主要表现为驻波振动特征;而淮河流域、华北、西南地区显示出降水异常信号具有部分的行波特征。尤其第4空间模显示出旱涝异常信号从东北南部可沿着黄淮下游传到长江下游地区。对于近百年中国东部地区夏季于湿变化,长江中下游地区、淮河流域、华北及东北四个地区都存在20-25年时间尺度的周期振荡;长江中下游地区及华北地区都存在准60年时间尺度的振荡周期;东北地区主要表现出36年时间尺度的振荡周期;淮河流域存在明显的70-80年时间尺度的振荡周期;华北地区存在的11年时间尺度的振荡周期恰好与太阳黑子活动的11年周期相一致。在年代际时间尺度(包括次年代际时间尺度)上,长江中下游、淮河流域及华北地区的夏季降水的变化与太阳活动有显著的正相关。  相似文献   
43.
分海洋和陆地两种情况来讨论IAP/LASG全球海-陆-气耦合系统模式(GOAL)四个版本的结果,并与观测资料进行对比分析。一些重要的大气变量包括表面空气温度,海平面气压和降水率用来评估GOALS模式模拟当代气候和气候变率的能力。总的来说,GOALS模式的四个版本都能够合理地再现观测到的平均气候态和季节变化的主要特征。同时评估也揭示了模式的一些缺陷。可以清楚地看到模拟的全球平均海平面气压的主要误差是在陆地上。陆地上表面空气温度模拟偏高主要是由于陆面过程的影响。值得注意的是降水率模拟偏低主要是在海洋上,而中高纬的陆地降水在北半球冬天却比观测偏高。 通过模式不同版本之间的相互比较研究,可以发现模式中太阳辐射日变化物理过程的引入明显地改善了表面空气温度的模拟,尤其是在中低纬度的陆地上。太阳辐射日变化的引入对热带陆地的降水和中高纬度的冬季降水也有较大改进。而且,由于使用了逐日通量距平交换方案(DFA),GOALS模式新版本模拟的海洋上的温度变率在中低纬度有了改善。 比较观测和模拟的年平均表面空气温度的标准差,可以发现GOALS模式四个版本都低估了海洋和陆地上的温度变率,文中还对影响观测和模拟温度变率差异的可能原因进行了探讨。  相似文献   
44.
The impact of changing catchment vegetation type on mean annual runoff has been known for some time, however, the impact on the variability of annual runoff has been established only recently. Differences in annual actual evapotranspiration between vegetation types and the potential effect of changing vegetation type on mean annual runoff and the variability of annual runoff are briefly reviewed. The magnitude of any change in the variability of annual runoff owing to a change in catchment vegetation type is related to the pre‐ and post‐change vegetation types and the seasonality of precipitation, assuming that the variability of annual precipitation remains constant throughout. Significant implications of the relationship between vegetation type and the variability of annual runoff are presented and discussed for water resource management, stream ecology and fluvial geomorphology. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
45.
It is critical to understand and quantify the temporal and spatial variability in hillslope hydrological data in order to advance hillslope hydrological studies, evaluate distributed parameter hydrological models, analyse variability in hydrological response of slopes and design efficient field data sampling networks. The spatial and temporal variability of field‐measured pore‐water pressures in three residual soil slopes in Singapore was investigated using geostatistical methods. Parameters of the semivariograms, namely the range, sill and nugget effect, revealed interesting insights into the spatial structure of the temporal situation of pore‐water pressures in the slopes. While informative, mean estimates have been shown to be inadequate for modelling purposes, indicator semivariograms together with mean prediction by kriging provide a better form of model input. Results also indicate that significant temporal and spatial variability in pore‐water pressures exists in the slope profile and thereby induces variability in hydrological response of the slope. Spatial and temporal variability in pore‐water pressure decreases with increasing soil depth. The variability decreases during wet conditions as the slope approaches near saturation and the variability increases with high matric suction development following rainfall periods. Variability in pore‐water pressures is greatest at shallow depths and near the slope crest and is strongly influenced by the combined action of microclimate, vegetation and soil properties. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
46.
The patterns of spatial variation of diatom assemblages from surface sediments in Lake Lama were quantified using a combined approach of ordination and geostatistics. The aims were (i) to estimate the amount of variation between diatom assemblages within the lake, (ii) to model the spatial variability of the diatom assemblages and their diversity, and (iii) to map the diatom distributions in the lake. A correspondence analysis (CA) separated the diatom assemblages into a planktonic and a periphytic group. Rheophilic taxa were found within the periphytic group. Variogram analysis showed that only the sample scores of the first CA axis and the Shannon diversity index were spatially structured. The range of spatial correlation was estimated to be 55 km for both variables. The diversity and, to a lesser extent, the sample scores had considerable small-scale variability of about 20 and 3%, respectively. Estimates of the first component of the CA and the Shannon index were derived using block-kriging. The maps of the estimates provided a basis for partitioning Lake Lama according to the spatial structures into an eastern and a western basin, a north–south connection between the basins, and a north–south directed tip at the far eastern end. It was shown that variation in diatom assemblages is mainly spatially structured at the catchment scale and that there is a considerable amount of variation at smaller scales. According to the modeled spatial distribution, the assemblages are most likely affected by the lake size, morphology, and the water and nutrient input introduced by rivers. This has to be taken into account when paleolimnological interpretations are drawn from records of complex lake systems like Lake Lama.  相似文献   
47.
Studies indicate that the climate has experienced a dramatic change in the Heihe River Basin with scope of temperature rise reaching 0.5-1.1oC in the 1990s compared to the mean value of the period 1960-1990, precipitation increased 18.5 mm in the 1990s compared to the 1950s, and 6.5 mm in the 1990s compared to the mean value of the period 1960-1990, water resources decreased 2.6×108 m3 in the 1990s compared to the 1950s, and 0.4×108 m3 in the 1990s compared to the mean value of the period 1960-1990. These changes have exerted a greater effect on the local environment and socio-economy, and also made the condition worsening in water resources utilizations in the Heihe Rver Basin.  相似文献   
48.
As surface exchange processes are highly non-linear and heterogeneous in space and time, it is important to know the appropriate scale for the reasonable prediction of these exchange processes. For example, the explicit representation of surface variability has been vital in predicting mesoscale weather events such as late-afternoon thunderstorms initiated by latent heat exchanges in mid-latitude regions of the continental United States. This study was undertaken to examine the effects of different spatial scales of input data on modeled fluxes, so as to better understand the resolution needed for accurate modeling. A statistical procedure was followed to select two cells from the Southern Great Plains 1997 hydrology experiment region, each 20 km×20 km, representing the most homogeneous and the most heterogeneous surface conditions (based on soil and vegetation) within the study region. The NOAH-OSU (Oregon State University) Land Surface Model (LSM) was employed to estimate surface energy fluxes. Three scales of study (200 m, 2 and 20 km) were considered in order to investigate the impacts of the aggregation of input data, especially soil and vegetation inputs, on the model output. Model results of net radiation and latent, sensible and ground heat fluxes were compared for the three scales. For the heterogeneous area, the model output at the 20-km resolution showed some differences when compared with the 200-m and 2-km resolutions. This was more pronounced in latent heat (12% decrease), sensible heat (22% increase), and ground heat flux (44% increase) estimation than in net radiation. The scaling effects were much less for the relatively homogeneous land area with 5% increase in sensible heat and 4% decrease in ground heat flux estimation. All of the model outputs for the 2- and 20-km resolutions were in close agreement. The results suggested that, for this study region, soils and vegetation input resolution of about 2 km should be chosen for realistic modeling of surface exchange processes. This resolution was sufficient to capture the effects of sub-grid scale heterogeneity, while avoiding the data and computational difficulties associated with higher spatial resolutions.  相似文献   
49.
During strong ground motion it is expected that extended structures (such as bridges) are subjected to excitation that varies along their longitudinal axis in terms of arrival time, amplitude and frequency content, a fact primarily attributed to the wave passage effect, the loss of coherency and the role of local site conditions. Furthermore, the foundation interacts with the soil and the superstructure, thus significantly affecting the dynamic response of the bridge. A general methodology is therefore set up and implemented into a computer code for deriving sets of appropriately modified time histories and spring–dashpot coefficients at each support of a bridge with account for spatial variability, local site conditions and soil–foundation–superstructure interaction, for the purposes of inelastic dynamic analysis of RC bridges. In order to validate the methodology and code developed, each stage of the proposed procedure is verified using recorded data, finite‐element analyses, alternative computer programs, previous research studies, and closed‐form solutions wherever available. The results establish an adequate degree of confidence in the use of the proposed methodology and code in further parametric analyses and seismic design. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
50.
The methodology for dealing with spatial variability of ground motion, site effects and soil–structure interaction phenomena in the context of inelastic dynamic analysis of bridge structures, and the associated analytical tools established and validated in a companion paper are used herein for a detailed parametric analysis, aiming to evaluate the importance of the above effects in seismic design. For a total of 20 bridge structures differing in terms of structural type (fundamental period, symmetry, regularity, abutment conditions, pier‐to‐deck connections), dimensions (span and overall length), and ground motion characteristics (earthquake frequency content and direction of excitation), the dynamic response corresponding to nine levels of increasing analysis complexity was calculated and compared with the ‘standard’ case of a fixed base, uniformly excited, elastic structure for which site effects were totally ignored. It is concluded that the dynamic response of RC bridges is indeed strongly affected by the coupling of the above phenomena that may adversely affect displacements and/or action effects under certain circumstances. Evidence is also presented that some bridge types are relatively more sensitive to the above phenomena, hence a more refined analysis approach should be considered in their case. Copyright @ 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号