首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1304篇
  免费   292篇
  国内免费   290篇
测绘学   4篇
大气科学   133篇
地球物理   282篇
地质学   973篇
海洋学   215篇
天文学   7篇
综合类   42篇
自然地理   230篇
  2024年   3篇
  2023年   23篇
  2022年   45篇
  2021年   65篇
  2020年   52篇
  2019年   52篇
  2018年   56篇
  2017年   52篇
  2016年   58篇
  2015年   64篇
  2014年   71篇
  2013年   76篇
  2012年   69篇
  2011年   73篇
  2010年   79篇
  2009年   92篇
  2008年   89篇
  2007年   91篇
  2006年   81篇
  2005年   66篇
  2004年   84篇
  2003年   71篇
  2002年   57篇
  2001年   57篇
  2000年   42篇
  1999年   51篇
  1998年   51篇
  1997年   42篇
  1996年   35篇
  1995年   16篇
  1994年   20篇
  1993年   24篇
  1992年   15篇
  1991年   12篇
  1990年   14篇
  1989年   13篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有1886条查询结果,搜索用时 46 毫秒
61.
Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer‐lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater‐borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer‐lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater‐borne P loads vary from 0.74 to 2900 mg PO4‐P m?2 year?1; for N, these loads vary from 0.001 to 640 g m?2 year?1. Even small amounts of seepage can carry large nutrient loads due to often high nutrient concentrations in groundwater. Large spatial heterogeneity, uncertain areal extent of the interface and difficult accessibility make every determination of LGD a challenge. However, determinations of LGD are essential to effective lake management. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
62.
The paper presents a new approach to calculating the erosion and deposition values of floodplain lake basins, the erosion–deposition index (EDI). The EDI is a sum of the basin geometry indices (BGIs), which can be calculated for a separate cross section of the lake. The distribution of processes within the basin was investigated in two selected floodplain lakes with the use of BGIs. Field research was carried out in the Bug River valley from 1 November 2006 to 31 October 2011. The highest erosion was observed in the lakes located close to the parent river. Deposition processes were observed in lakes with high inflow of groundwater. The results showed that EDI values of 48 out of the 71 floodplain lakes ranged from ?0.2 to 0.2. Spatial distribution of erosion and deposition processes within the lake basins resulted from a velocity of water inflowing or flowing through the basin. This was observed especially in contrafluent–confluent lake. Inflow of rivers water via upstream crevasse occurred later than via downstream one, but energy of flowing water was higher, which favoured erosion of this part of the lake basin. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
63.
Phosphorus (P) is one of the major limiting nutrient in many freshwater ecosystems. During the last decade, attention has been focused on the fluxes of suspended sediment and particulate P through freshwater drainage systems because of severe eutrophication effects in aquatic ecosystems. Hence, the analysis and prediction of phosphorus and sediment dynamics constitute an important element for ecological conservation and restoration of freshwater ecosystems. In that sense, the development of a suitable prediction model is justified, and the present work is devoted to the validation and application of a predictive soluble reactive phosphorus (SRP) uptake and sedimentation models, to a real riparian system of the middle Ebro river floodplain. Both models are coupled to a fully distributed two‐dimensional shallow‐water flow numerical model. The SRP uptake model is validated using data from three field experiments. The model predictions show a good accuracy for SRP concentration, where the linear regressions between measured and calculated values of the three experiments were significant (r2 ≥ 0.62; p ≤ 0.05), and a Nash–Sutcliffe coefficient (E) that ranged from 0.54 to 0.62. The sedimentation model is validated using field data collected during two real flooding events within the same river reach. The comparison between calculated and measured sediment depositions showed a significant linear regression (p ≤ 0.05; r2 = 0.97) and an E that ranged from 0.63 to 0.78. Subsequently, the complete model that includes flow dynamics, solute transport, SRP uptake and sedimentation is used to simulate and analyse floodplain sediment deposition, river nutrient contribution and SRP uptake. According to this analysis, the main SRP uptake process appears to be the sediment sorption. The analysis also reveals the presence of a lateral gradient of hydrological connectivity that decreases with distance from the river and controls the river matter contribution to the floodplain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
64.
River confluences and their associated tributaries are key morphodynamic nodes that play important roles in controlling hydraulic geometry and hyporheic water exchange in fluvial networks. However, the existing knowledge regarding hyporheic water exchange associated with river confluence morphology is relatively scarce. On January 14 and 15, 2016, the general hydraulic and morphological characteristics of the confluent meander bend (CMB) between the Juehe River and the Haohe River in the southern region of Xi'an City, Shaanxi Province, China, were investigated. The patterns and magnitudes of vertical hyporheic water exchange (VHWE) were estimated based on a one‐dimensional heat steady‐state model, whereas the sediment vertical hydraulic conductivity (Kv) was calculated via in situ permeameter tests. The results demonstrated that 6 hydrodynamic zones and their extensions were observed at the CMB during the test period. These zones were likely controlled by the obtuse junction angle and low momentum flux ratio, influencing the sediment grain size distribution of the CMB. The VHWE patterns at the test site during the test period mostly showed upwelling flow dominated by regional groundwater discharging into the river. The occurrence of longitudinal downwelling and upwelling patterns along the meander bend at the CMB was likely subjected to the comprehensive influences of the local sinuosity of the meander bend and regional groundwater discharge and finally formed regional and local flow paths. Additionally, in dominated upwelling areas, the change in VHWE magnitudes was nearly consistent with that in Kv values, and higher values of both variables generally occurred in erosional zones near the thalweg paths of the CMB, which were mostly made up of sand and gravel. This was potentially caused by the erosional and depositional processes subjected to confluence morphology. Furthermore, lower Kv values observed in downwelling areas at the CMB were attributed to sediment clogging caused by local downwelling flow. The confluence morphology and sediment Kv are thus likely the driving factors that cause local variations in the VHWE of fluvial systems.  相似文献   
65.
The sequence architecture and depositional systems of the Paleogene lacustrine rift succession in the Huanghekou Sag, Bohai Bay Basin, NE China were investigated based on seismic profiles, combined with well log and core data. Four second‐order or composite sequences and seven third‐order sequences were identified. The depositional systems identified in the basin include: fan delta, braid delta, meander fluvial delta, lacustrine and sublacustrine fan. Identification of the slope break was conducted combining the interpretation of faults of each sequence and the identification of syndepositional faults, based on the subdivision of sequence stratigraphy and analysis of depositional systems. Multiple geomorphologic units were recognized in the Paleogene of the Huanghekou Sag including faults, flexures, depositional slope break belts, ditch‐valleys and sub‐uplifts in the central sag. Using genetic division principles and taking into consideration tectonic features of the Paleogene of the Huanghekou Sag, the study area was divided into the Northern Steep Slope/Fault Slope Break System, the Southern Gentle Slope Break System and T10 Tectonic Slope Break System/T10 Tectonic Belt. Responses of slope break systems to deposition–erosion are shown as: (1) basin marginal slope break is the boundary of the eroded area and provenance area; (2) ditch‐valley formed by different kinds of slope break belts is a good transport bypass for source materials; (3) shape of the slope break belt of the slope break system controls sediments types; (4) the ditch‐valley and sub‐sag of a slope break system is an unloading area for sediments; and (5) due to their different origins, association characteristics and developing patterns, the Paleogene slope break belt systems in the Huanghekou Sag show different controls on depositional systems. The Northern Fault Slope Break system controls the deposition of a fan delta‐lacustrine‐subaqueous fan, the Southern Gentle Slope Break system controls the deposition of a fluvial–deltaic–shallow lacustrine and sublacustrine fan, and the T10 Tectonic Slope Break System controls the deposition of shallow lacustrine beach bar sandbodies. The existence of a slope break system is a necessary but not a sufficient condition for studying sandbody development. The formation of effective sandbodies along the slope break depends on the reasonable coupling of effective provenance, necessary association patterns of slope break belt, adequate unloading space and creation of definite accommodation space. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
66.
中国东南大陆晚侏罗世地层普遍缺失,仅零星见于个别地区,香港新界东北的荔枝庄组即为其一。荔枝庄组出露于香港世界地质公园沉积岩园区的荔枝庄地区,自下往上由火山岩—沉积岩—火山岩组合而成,沉积岩中发育大型包卷层理和滑塌构造等典型沉积构造,是香港地区最具代表性的晚侏罗世火山—沉积岩系。通过实测地层剖面研究,确定其成岩过程大体上可划分为早期普林尼式火山爆发、中期破火山口湖相沉积和晚期普林尼式火山爆发三个阶段,以湖相沉积作用为主、火山喷发作用为辅;受晚期火山岩浆活动的影响,沉积岩层普遍发生硅化或炭化。荔枝庄组独特的岩石组合与形成的古地理环境,为探讨中国东南大陆中生代火山活动—沉积作用方式与成岩过程,提供了难得的研究实例。  相似文献   
67.
68.
Overlapping gravity accumulation bodies were formed on the northwestern steep slope of the Shuangyang Formation in the Moliqing fault depression of northeast China. This study analyzed in detail the spatial distribution of the lithofacies and lithofacies associations of these accumulation bodies based on more than 600 m of core sections, and summarized 12 major types of lithofacies and three types of lithofacies associations: (1) the proximal zone consists of gravelly debris flows dominated by alluvial channel conglomerates; (2) the middle zone is dominated by various gravity flow deposits and traction flow deposits; and (3) the distal zone is dominated by mudstones with intercalations of sandy debris and turbidites. Combining with the grain size cumulative probability curves analysis, we determined the transformation of debris flows to sandy debris flows and to turbidity currents in the slope zone of the basin margin, and further proposed a lacustrine slope apron model that is characterized by (1) an inconstant multiple source (line source), (2) an alternation of gravity flow deposits and traction flow deposits dominated by periodical changes in a source flood flow system, and (3) the transformation of sandy debris flow deposits into distal turbidity current deposits. This sedimentary model may be applicable to other fault depressions for predicting reservoir distribution.  相似文献   
69.
陕北风沙区含砾石工程堆积体坡面产流产沙试验   总被引:1,自引:0,他引:1       下载免费PDF全文
采用室内人工模拟降雨方法,研究了陕北风沙区含砾石工程堆积体边坡的产流产沙过程。结果表明:①砾石存在改变了坡面入渗速率,径流系数受入渗速率的影响,随砾石含量的增加先线性递减后线性递增,并在10%砾石含量处存在阈值;径流系数随降雨强度的增加线性递增。②含砾石堆积体坡面流速较纯土堆积体降低,且随雨强增大,砾石延缓径流流动的作用越显著;雨强对径流流速的影响随砾石含量增加持续减弱。③土壤剥蚀率在产流24~33 min后显著增加,砾石主要对显著增加后的平均剥蚀率产生影响。④雨强1.0 mm/min时,砾石存在促进降雨侵蚀,产沙量增大;雨强大于1.0 mm/min时,砾石具有显著的减沙效应。  相似文献   
70.
根据密井网测井、录井以及其它分析化验资料,结合区域地质背景,对松辽盆地杏树岗油田杏三区东部白垩系姚家组一段葡萄花Ⅰ组油层1-3小层(葡Ⅰ1-3小层)沉积微相类型、特征、组合模式和不同地质时期沉积微相平面展布特征及其演化规律进行系统的研究。结果表明,葡Ⅰ1-3小层为浅水湖泊三角洲沉积,主要发育三角洲分流平原和三角洲内前缘2种沉积亚相,含11种沉积微相,具有不同的沉积特征和测井相模式;利用自然电位曲线幅变值和砂体厚度,有效识别天然堤、水上决口沉积、溢岸薄层砂3种有成因联系、测井曲线形态类似的沉积微相;进一步根据各沉积微相的测井曲线形态组合、沉积成因及沉积作用的不同,总结出7种沉积微相组合模式。葡Ⅰ1-3小层沉积演化经历了早期湖退、中期稳定、晚期湖侵3个阶段,不同时期的沉积特征、沉积微相展布各异,总体表现出湖盆发育规模由大变小,再变大,骨架砂体厚度和理想钻遇率逐渐减小的特点。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号