首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   43篇
  国内免费   169篇
地球物理   47篇
地质学   578篇
海洋学   21篇
综合类   5篇
自然地理   9篇
  2024年   5篇
  2023年   8篇
  2022年   13篇
  2021年   15篇
  2020年   22篇
  2019年   22篇
  2018年   32篇
  2017年   25篇
  2016年   22篇
  2015年   23篇
  2014年   27篇
  2013年   31篇
  2012年   39篇
  2011年   32篇
  2010年   15篇
  2009年   32篇
  2008年   33篇
  2007年   27篇
  2006年   26篇
  2005年   34篇
  2004年   27篇
  2003年   24篇
  2002年   16篇
  2001年   14篇
  2000年   16篇
  1999年   18篇
  1998年   14篇
  1997年   15篇
  1996年   9篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1978年   1篇
排序方式: 共有660条查询结果,搜索用时 62 毫秒
21.
Charnockitic magmatism in southern India   总被引:2,自引:0,他引:2  
Large charnockite massifs cover a substantial portion of the southern Indian granulite terrain. The older (late Archaean to early Proterozoic) charnockites occur in the northern part and the younger (late Proterozoic) charnockites occur in the southern part of this high-grade terrain. Among these, the older Biligirirangan hill, Shevroy hill and Nilgiri hill massifs are intermediate charnockites, with Pallavaram massif consisting dominantly of felsic charnockites. The charnockite massifs from northern Kerala and Cardamom hill show spatial association of intermediate and felsic charnockites, with the youngest Nagercoil massif consisting of felsic charnockites. Their igneous parentage is evident from a combination of features including field relations, mineralogy, petrography, thermobarometry, as well as distinct chemical features. The southern Indian charnockite massifs show similarity with high-Ba-Sr granitoids, with the tonalitic intermediate charnockites showing similarity with high-Ba-Sr granitoids with low K2O/Na2O ratios, and the felsic charnockites showing similarity with high-Ba-Sr granitoids with high K2O/Na2O ratios. A two-stage model is suggested for the formation of these charnockites. During the first stage there was a period of basalt underplating, with the ponding of alkaline mafic magmas. Partial melting of this mafic lower crust formed the charnockitic magmas. Here emplacement of basalt with low water content would lead to dehydration melting of the lower crust forming intermediate charnockites. Conversely, emplacement of hydrous basalt would result in melting at higher {ie565-01} favoring production of more siliceous felsic charnockites. This model is correlated with two crustal thickening phases in southern India, one related to the accretion of the older crustal blocks on to the Archaean craton to the north and the other probably related to the collision between crustal fragments of East and West Gondwana in a supercontinent framework.  相似文献   
22.
The deep structure of the gabbro–anorthosite–rapakivi granite (“AMCG-type”) Korosten Pluton (KP) in the northwestern Ukrainian Shield was studied by 3-D modelling of the gravity and magnetic fields together with previous seismic data. The KP occupies an area of ca. 12,500 km2 and comprises several layered gabbro-anorthositic intrusions enveloped by large volumes of rapakivi-type granitoids. Between 1.80 and 1.74 Ga, the emplacement of mafic and associated granitoid melts took place in several pulses. The 3-D geophysical reconstruction included: (a) modelling of the density distribution in the crust using the observed Bouguer anomaly field constrained by seismic data on Moho depth, and (b) modelling of the magnetic anomaly field in order to outline rock domains of various magnetisation, size and shape in the upper and lower crust. The density modelling was referred to three depth levels of 0 to 5, 5 to 18, and 18 km to Moho, respectively. The 3-D reconstruction demonstrates close links between the subsurface geology of the KP and the structure of the lower crust. The existence of a non-magnetic body with anomalously high seismic velocity and density is documented. Most plausibly, it represents a gabbroic stock (a parent magma chamber) with a vertical extent of ca. 20 km, penetrating the entire lower crust. This stock has a half-cylindrical shape and a diameter of ca. 90 km. It appears to be connected with a crust–mantle transitional lens previously discovered by EUROBRIDGE seismic profiling. The position of the stock relative to the subsurface outlines of the KP is somewhat asymmetric. This may be due to a connection between the magmatism and sets of opposite-dipping faults initially developed during late Palaeoproterozoic collisional deformation in the Sarmatian crustal segment. Continuing movements and disturbances of the upper mantle and the lower crust during post-collisional tectonic events between 1.80 and 1.74 Ga may account for the long-lived, recurrent AMCG magmatism.  相似文献   
23.
Northeastern (NE) China is a well-documented example of a collisional zone characterized by widespread post-orogenic granites and mafic–ultramafic complexes. Based on a study of the Hongqiling and Piaohechuan Cu–Ni sulfide-bearing mafic–ultramafic complexes in central Jilin province, we present geological, petrological, geochemical and geochronological data which indicates their post-orogenic origin.The Hongqiling complex comprises pyroxenite, olivine websterite, lherzolite, gabbro and leucogabbro. Zircon U–Pb SHRIMP analyses on a leucogabbro of the Hongqiling complex yield a weighted mean 206Pb–238U age of 216±5 Ma. The Piaohechuan complex is composed of gabbro, pyroxenite and dolerite, exposed as dikes. A plagioclase-bearing pyroxenite has a U–Pb zircon weighted mean 206Pb–238U age of 217±3 Ma, identical to that of the Hongqiling complex. These ages are coeval with the emplacement of A-type granites in the area, but slightly younger than the regional metamorphism (240 Ma) and syn-orogenic granitic magmatism (246±4 Ma). This suggests that these mafic–ultramafic complexes are post-orogenic in origin. The age data also indicated a short period of lithospheric stabilization of about 30 Ma after cessation of orogenic activity.Geochemical investigation indicates that the primary mafic magma was a lithospheric mantle-derived basalt resulting from the upwelling of asthenosphere due to lithospheric delamination during post-orogenic processes. The magmatic source was contaminated by a small amount of crustal material, and subsequent crystal fractionation resulted in the Cu–Ni mineralization.The widespread occurrence of mafic–ultramafic complexes in the Xing'an–Mongolian Orogenic Belt of NE China and in the Altay–Tianshan–Junggar Orogenic Belt of Northern Xinjiang indicates that mafic intrusions are an important magmatic suite that evolved during post-orogenic processes. Portions of this mafic magma could have underplated the lower crust, and served as the heat source for associated late-stage granitic magmas.  相似文献   
24.
The Kunavaram alkaline complex is a NE-SW trending elongate body located along a major lineament, the Sileru Shear Zone (SSZ) that is regarded as a Proterozoic suture related to Indo-Antarctica collision. The complex is hosted within migmatitic quartzofeldspathic gneisses, mafic granulites retrogressed to amphibolites, and quartzites. The structural evolution of the country rocks and the alkaline complex are similar. The first phase of deformation, D1, produces a pervasive segregation banding (S1) in all rock units within and outside the complex. A second deformation phase D2 isoclinally folded S1 along subvertical axial planes with shallow plunging axes. F2 isoclinal folds are ubiquitous in the country rocks and the eastern extremity of the complex. In the interior of the alkaline body, D2 strain decreases and S1 is commonly subhorizontal. While amphibolite to granulite facies conditions prevailed during deformation, post-D2 annealing textures testify to persisting high grade conditions. In the west, a NNE-SSW trending dextral shear zone with strike-slip sense (D3) truncates the complex. Within this shear zone, quartzofeldspathic country rocks are plastically deformed, while hornblende-K-feldspar assemblages of the complex are retrogressed to biotite and plagioclase. Warping related to D3 shears also resulted in fold interference patterns on the subhorizontal S1 foliation in low D2 strain domains. Based on its steep dip, north-easterly trend, and non-coaxial nature with dextral strike-slip sense, the D3 shear zone can be correlated with the SSZ. Since this shear zone, i.e., the SSZ, is not associated with primary igneous fabrics and resulted in solid state deformation of the complex, it cannot be considered as a conduit for alkaline magmatism, but is probably responsible for the post-tectonic disposition of the pluton.  相似文献   
25.
Seismic tomography studies in the northeastern Japan arc have revealed the existence of an inclined sheet-like seismic low-velocity and high-attenuation zone in the mantle wedge at depths shallower than about 150 km. This sheet-like low-velocity, high-attenuation zone is oriented sub-parallel to the subducted slab, and is considered to correspond to the upwelling flow portion of the subduction-induced convection. The low-velocity, high-attenuation zone reaches the Moho immediately beneath the volcanic front (or the Ou Backbone Range) running through the middle of the arc nearly parallel to the trench axis, which suggests that the volcanic front is formed by this hot upwelling flow. Aqueous fluids supplied by the subducted slab are probably transported upward through this upwelling flow to reach shallow levels beneath the Backbone Range where they are expelled from solidified magma and migrate further upward. The existence of aqueous fluids may weaken the surrounding crustal rocks, resulting in local contractive deformation and uplift along the Backbone Range under the compressional stress field of the volcanic arc. A strain-rate distribution map generated from GPS data reveals a notable concentration of east–west contraction along the Backbone Range, consistent with this interpretation. Shallow inland earthquakes are also concentrated in the upper crust of this locally large contraction deformation zone. Based on these observations, a simple model is proposed to explain the deformation pattern of the crust and the characteristic shallow seismic activity beneath the northeastern Japan arc.  相似文献   
26.
The Quaternary Acatlán Volcanic Field (AVF) is located at the western edge of the Trans-Mexican Volcanic Belt (TMVB). This region is related to the subduction of the Pacific Cocos and Rivera plates beneath the North American plate since the late Miocene. AVF rocks are products of Pleistocene volcanic activity and include lava flows, domes, erupted basaltic andesite, trachyandesite, trachydacite, and rhyolite of calc–alkaline affinity. Most rocks show depletion in high field-strength elements and enrichment in large ion lithophile elements and light rare earth elements as is typical for magmas in subduction-related volcanic arcs. 87Sr/86Sr values range from 0.70361 to 0.70412, while Nd values vary from +2.3 to +5.2. Sr–Nd isotopic data plot along the mantle array. On the other hand, lead isotope compositions (206Pb/204Pb=18.62–18.75, 207Pb/204Pb=15.57–15.64, and 208Pb/204Pb=38.37–38.67) give evidence for combined influences of the upper mantle, fluxes derived from subducted sediments, and the upper continental crust involved in magma genesis at AVF. Additionally δ18O whole rock analyses range from +6.35‰ in black pumice to +10.9‰ in white pumice of the Acatlán Ignimbrite. A fairly good correlation is displayed between Sr as well as O isotopes and SiO2 emphasizing the effects of crustal contamination. Compositional and isotopic data suggest that the different AVF series derived from distinct parental magmas, which were generated by partial melting of a heterogeneous mantle source.  相似文献   
27.
The Mont Collon mafic complex is one of the best preserved examples of the Early Permian magmatism in the Central Alps, related to the intra-continental collapse of the Variscan belt. It mostly consists (> 95 vol.%) of ol + hy-normative plagioclase-wehrlites, olivine- and cpx-gabbros with cumulitic structures, crosscut by acid dikes. Pegmatitic gabbros, troctolites and anorthosites outcrop locally. A well-preserved cumulative sequence is exposed in the Dents de Bertol area (center of intrusion). PT calculations indicate that this layered magma chamber emplaced at mid-crustal levels at about 0.5 GPa and 1100 °C. The Mont Collon cumulitic rocks record little magmatic differentiation, as illustrated by the restricted range of clinopyroxene mg-number (Mg#cpx = 83–89). Whole-rock incompatible trace-element contents (e.g. Nb, Zr, Ba) vary largely and without correlation with major-element composition. These features are characteristic of an in-situ crystallization process with variable amounts of interstitial liquid L trapped between the cumulus mineral phases. LA-ICPMS measurements show that trace-element distribution in the latter is homogeneous, pointing to subsolidus re-equilibration between crystals and interstitial melts. A quantitative modeling based on Langmuir's in-situ crystallization equation successfully duplicated the REE concentrations in cumulitic minerals of all rock facies of the intrusion. The calculated amounts of interstitial liquid L vary between 0 and 35% for degrees of differentiation F of 0 to 20%, relative to the least evolved facies of the intrusion. L values are well correlated with the modal proportions of interstitial amphibole and whole-rock incompatible trace-element concentrations (e.g. Zr, Nb) of the tested samples. However, the in-situ crystallization model reaches its limitations with rock containing high modal content of REE-bearing minerals (i.e. zircon), such as pegmatitic gabbros. Dikes of anorthositic composition, locally crosscutting the layered lithologies, evidence that the Mont Collon rocks evolved in open system with mixing of intercumulus liquids of different origins and possibly contrasting compositions. The proposed model is not able to resolve these complex open systems, but migrating liquids could be partly responsible for the observed dispersion of points in some correlation diagrams. Absence of significant differentiation with recurrent lithologies in the cumulitic pile of Dents de Bertol points to an efficiently convective magma chamber, with possible periodic replenishment.  相似文献   
28.
Precambrian metaplutonic rocks of the São Gabriel block in southernmost Brazil comprise juvenile Neoproterozoic calc-alkaline gneisses (Cambaí Complex). The connection with associated (ultra-)mafic metavolcanic and metasedimentary rocks (Palma Group) is not well established. The whole complex was deformed during the Brasiliano orogenic cycle. Both metasedimentary and metavolcanic rocks as well as metaplutonic rocks of the Cambaí Complex have been sampled for geochemical analyses in order to get constraints on the tectonic setting of these rocks and to establish a tectonic model for the São Gabriel block and its role during the assembly of West-Gondwana. The major element compositions of the igneous rocks (Palma Group and Cambaí Complex) indicate a subalkaline character; most orthogneisses have a calc-alkaline chemistry; many metavolcanic rocks of the Palma Group show signatures of low-K tholeiitic volcanic arc basalts. Trace element data, especially Ti, Zr, Y, Nb, of most igneous samples from both the lower Palma Group and the Cambaí Complex indicate origin at plate margins, i.e., in a subduction zone environment. This is corroborated by relative enrichment in LREE, low contents of Nb and other high field strength elements and enrichment in LILE like Rb, Ba, and Th. The data indicate the possible existence of two suites, an oceanic island arc and a continental arc or active continental margin. However, some ultramafic samples of the lower Palma Group in the western São Gabriel block indicate the existence of another volcanic suite with intra-plate character which possibly represents relics of oceanic island basalts (OIB). Trace element data indicate contributions from andesitic to mixed felsic and basic arc sources for the metasedimentary rocks. The patterns of chondrite- and N-MORB-normalized spider diagrams resemble the patterns of the igneous rocks, i.e., LILE and LREE enrichment and HFS depletion. The geochemical signatures of most igneous and metasedimentary samples and their low (87Sr/86Sr)t ratios suggest only minor contribution of old continental crust.A geotectonic model for the São Gabriel block comprises east-ward subduction and following accretion of an intra-oceanic island arc to the eastern border of the Rio de la Plata Craton at ca. 880 Ma, and westward subduction beneath the newly formed active continental margin between ca. 750 and 700 Ma. The São Gabriel block represents relics of an early Brasiliano oceanic basin between the Rio de la Plata and Kalahari Cratons. This ocean to the east of the Rio de la Plata Craton might be traced to the north and could possibly be linked with Neoproterozoic juvenile oceanic crust in the western Brasília belt (Goiás magmatic arc).  相似文献   
29.
Mount Bangou, an Eocene volcano (40K–40Ar ages between 44.7 and 43.1 ± 1 Ma) is the oldest dated volcano of the Cameroon Line. In this region, two magmatic series, evolving by fractional crystallization, show transitional affinities that are exceptionally known in this sector. Mineral compositions of basaltic rocks (scarce modal olivine and occurrence of normative hypersthene) as well as geochemical characteristics (low Ba, La, Ta contents and high Y/Nb ratios) are in agreement with this trend. The succession of magmas evolving in time from transitional to more typical alkaline compositions is evidenced in a continental setting. To cite this article: J. Fosso et al., C. R. Geoscience 337 (2005).  相似文献   
30.
PLANK  T. 《Journal of Petrology》2005,46(5):921-944
Arc magmas and the continental crust share many chemical features,but a major question remains as to whether these features arecreated by subduction or are recycled from subducting sediment.This question is explored here using Th/La, which is low inoceanic basalts (<0·2), elevated in the continents(>0·25) and varies in arc basalts and marine sediments(0·09–0·34). Volcanic arcs form linear mixingarrays between mantle and sediment in plots of Th/La vs Sm/La.The mantle end-member for different arcs varies between highlydepleted and enriched compositions. The sedimentary end-memberis typically the same as local trench sediment. Thus, arc magmasinherit their Th/La from subducting sediment and high Th/Lais not newly created during subduction (or by intraplate, adakiteor Archaean magmatism). Instead, there is a large fractionationin Th/La within the continental crust, caused by the preferentialpartitioning of La over Th in mafic and accessory minerals.These observations suggest a mechanism of ‘fractionation& foundering’, whereby continents differentiate intoa granitic upper crust and restite-cumulate lower crust, whichperiodically founders into the mantle. The bulk continentalcrust can reach its current elevated Th/La if arc crust differentiatesand loses 25–60% of its mafic residues to foundering. KEY WORDS: arc magmatism; continental crust; delamination; thorium; sediment subduction  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号