首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   43篇
  国内免费   29篇
测绘学   11篇
大气科学   9篇
地球物理   116篇
地质学   80篇
海洋学   60篇
天文学   4篇
综合类   8篇
自然地理   31篇
  2023年   2篇
  2022年   3篇
  2021年   5篇
  2020年   12篇
  2019年   21篇
  2018年   7篇
  2017年   13篇
  2016年   8篇
  2015年   13篇
  2014年   9篇
  2013年   20篇
  2012年   9篇
  2011年   18篇
  2010年   18篇
  2009年   9篇
  2008年   16篇
  2007年   17篇
  2006年   7篇
  2005年   13篇
  2004年   9篇
  2003年   8篇
  2002年   12篇
  2001年   4篇
  2000年   5篇
  1999年   9篇
  1998年   8篇
  1997年   9篇
  1996年   3篇
  1995年   8篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
排序方式: 共有319条查询结果,搜索用时 15 毫秒
311.
312.
In the Levant Basin, submarine channels are abundant around the Nile deep-sea fan (NDSF), an area which is also affected by salt tectonics related to the Messinian salt giant. Here we focus on the relationship between submarine channels and obstacles formed by salt tectonics. Initially, we use methods developed for terrestrial morphological analysis and quantify channel sinuosity, width and slope in search for consistent relationships between morphometric parameters and channel response to obstacles. However, this traditional analysis did not yield robust conclusions. Then, we apply two new morphometric parameters suggested here to express the distortion of channels by obstacles: incident angle (α), defined as the acute angle between the regionally influenced channel direction and the strike of the tectonic obstacle and diversion angle (Ω), defined as the angle between the direction of the regional bathymetric slope and the average direction of the channel. These parameters illustrate the influence of the regional-scale basin geometry and the superimposed tectonic-influenced seabed patterns, on channel development. We found hyperbolic relationships between incident angle (α) and diversion angle (Ω) in which channels flowing approximately parallel (α ≈ 0°) to tectonic folds are (obviously) not diverted; channels nearly orthogonal (α ≈ 90°) to obstacles, crosscut them right through and, again, not diverted much. In contrast, channels with a general direction diagonal to the obstacles (α ≈ 40°), are diverted by ten degrees (Ω ≈ 10°). This diversion accumulates along large distances and significantly influences the regional development of channels around the NDSF. Noteworthy, this phenomenon of channel diversion, indirectly deteriorate normal slope-sinuosity relationships known from terrestrial studies. In light of these findings, we suggest that these new parameters can be applied to other basins, where submarine channels interact with seabed obstacles.  相似文献   
313.
Submerged aquatic vegetation affects flow, sediment and ecological processes within rivers. Quantifying these effects is key to effective river management. Despite a wealth of research into vegetated flows, the detailed flow characteristics around real plants in natural channels are still poorly understood. Here we present a new methodology for representing vegetation patches within computational fluid dynamics (CFD) models of vegetated channels. Vegetation is represented using a Mass Flux Scaling Algorithm (MFSA) and drag term within the Reynolds‐averaged Navier–Stokes Equations, which account for the mass and momentum effects of the vegetation, respectively. The model is applied using three different grid resolutions (0.2, 0.1 and 0.05 m) using time‐averaged solution methods and compared to field data. The results show that the model reproduces the complex spatial flow heterogeneity within the channel and that increasing the resolution leads to enhanced model accuracy. Future applications of the model to the prediction of channel roughness, sedimentation and key eco‐hydraulic variables are presented, likely to be valuable for informing effective river management. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
314.
We report results from flume experiments designed to study the effect of width variations on the formation and stability of steps in steep streams. To physically model channel width changes we inserted multiple trapezoidal elements in the flume. Two competing effects are in play: a fluidic effect, suggesting that steps are more likely to form in wide areas because of deposition enhanced by lower shear stress, and a granular effect, suggesting that steps are more likely to form in narrow areas because of particle jamming. Our experiments show that width variations enhance the formation of steps. Although steps can form in every location, those in narrow/narrowing areas are more common, more stable and they occupy a larger portion of the channel width. These results stress the importance of particle interactions in coarse-bedded streams and help river engineers by providing a new element to consider when designing step-pool sequences in river restoration projects. © 2020 John Wiley & Sons, Ltd.  相似文献   
315.
One of the key issues associated with the hypothesis of catastrophic subglacial drainage of the Livingstone Lake event is whether flows of such large magnitudes are physically feasible. To explore this issue, a one‐dimensional hydraulic network flow model was developed to investigate the range of peak discharges and associated flow parameters that may have been carried by a tunnel channel network in south‐east Alberta, Canada. This tunnel channel network has been interpreted elsewhere to carry large discharges associated with subglacial meltwater flows because of the convex longitudinal profiles of individual channels. This computational modelling effort draws upon established and verified engineering principles and methods in its application to the hydraulics of this problem. Consequently, it represents a unique and independent approach to investigating the subglacial meltwater hypothesis. Based on the modelling results, it was determined that energy losses resulting from friction limit the maximum peak discharge that can be transported through the tunnel channel network to 107 m3 s−1, which is in reasonable agreement with previous estimates of flood discharges for proposed megafloods. Results show that flow through channels with convex longitudinal profiles occurs when hydraulic head exceeds 910 m (Lost River) and 950 m (Sage Creek) , respectively. These are considerably below the maximum head capable of driving flow through the system of 1360 m, beyond which ice is decoupled from the bed across the pre‐glacial drainage divide. Therefore, it is concluded that these model results support the hypothesis of catastrophic subglacial drainage during the Livingstone Lake event. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
316.
Following the Painted Cave Fire of 25 June 1990 in Santa Barbara, California which burned 1214 ha, an emergency watershed protection plan was implemented consisting of stream clearing, grade stabilizers and construction of debris basins. Research was initiated focusing on hydrological response and channel morphology changes on two branches of Maria Ygnacio Creek, the main drainage of the burned area. Research results support the hypothesis that the response of small drainage basins in chaparral ecosystems to wildfire is complex and flushing of sediment by fluvial processes is more likely than by high magnitude debris flows. During the winter of 1990–1991, 35–66 cm of rainfall and intensities up to 10 cm per hour for a five-minute period were recorded with a seasonal total of 100% of average (normal) rainfall (average=63 cm/year). During the winter of 1991–1992, 48–74 cm of rainfall and intensities up to 8 cm per hour were recorded with a seasonal total of 115% of normal. Even though there was moderate rainfall on barren, saturated soils, no major debris flows occurred in burned areas. The winter of 1992–1993 recorded total precipitation of about 170% of normal, annual average intensities were relatively low and again no debris flows were observed. The response to winter storms in the first three years following the fire was a moderate but spectacular flushing of sediment, most of which was derived from the hillslopes upstream of the debris basins. The first significant storm and stream flow of the 1990–1991 winter was transport-limited resulting in large volumes of sediment being deposited in the channel of Maria Ygnacio Creek; the second storm and stream flow was sediment-limited and the channel scoured. Debris basins trapped about 23 000 m3, the majority coming from the storm of 17–20 March 1991. Sediment transported downstream during the three winters following the fire and not trapped in the debris basins was eventually flushed to the estuarine reaches of the creeks below the burn area, where approximately 108 000 m3 accumulated. Changes in stream morphology following the fire were dramatic as pools filled with sediment which greatly smoothed longitudinal and cross-sectional profiles. Major changes in channel morphology occur following a fire as sediment derived from the hillslope is temporarily stored in channels within the burned area. However, this sediment may quickly move downstream of the burned region, where it may accumulate reducing channel capacity and increasing the flood hazard. Ecological consequences of wildfire to the riparian zone of streams in the chaparral environment are virtually unknown, but must be significant as the majority of sediment (particularly gravel necessary for fish and other aquatic organisms) entering the system does so in response to fires. © 1997 John Wiley & Sons, Ltd.  相似文献   
317.
Mapping of glacial meltwater channels along the length of the 25-km Mid-Cheshire Ridge reveals evidence for four distinctive channel morphologies, which are used to establish the pattern of meltwater flow during the Late Devensian glaciation. A key characteristic of all channels is an abrupt change in morphology between inception on the Mid-Cheshire Ridge and the downstream continuation on the surrounding Cheshire Plain, with large reductions in channel cross-sectional area at this point. The interpretation of this evidence is that meltwater flowing off the bedrock ridge was absorbed into a layer of permeable sediment beneath the Late Devensian ice sheet. This permeable sediment is significant because it would have acted as a deforming layer beneath the former ice sheet in this area. Reconstruction of the Late Devensian ice sheet based on information from the meltwater channels and using values of shear stresses typical of ice sheets resting on deformable beds (ca. 20 kPa) suggests an ice surface elevation over the Irish Sea of ca. 700 m. This value is considerably less than previous estimates of the vertical extent of the ice sheet of ca. 1000–1200 m and has important implications for the rapidity and mode of deglaciation during the Late Devensian. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
318.
杭州湾北部潮流深槽区细颗粒物质输运与再悬浮过程   总被引:2,自引:0,他引:2  
杨旸  高抒  汪亚平 《海洋学报》2008,30(2):92-101
于2005年5月大潮期间在杭州湾北部潮流深槽区的4个站位进行潮周期观测,获得了流速、悬沙等数据,并对其进行了分析,计算了水沙通量和再悬浮通量。分析结果表明,该深槽区涨潮流速大于落潮流速,涨潮历时小于落潮历时,潮差自湾口向湾内方向增大;悬沙的组分以粉砂为主,分选较差,偏态以负偏为主,这些特征与底质一致;深槽中部和东部的悬沙沿岸线向湾内方向输运;深槽西部和东部外侧的悬沙输运方向与余流方向一致,分别向湾内和南部输运;除转流和流速加速初期外,垂线流速分布符合Kûrmûn-Prandtl模型,摩阻流速与垂线平均流速变化趋势一致。计算得到的表观粗糙长度在涨落潮时段的水流加速或减速阶段都呈增大趋势,且数值较大,这难以把它简单地归结为床面形态的作用,表观粗糙长度的变化趋势可能是高悬沙浓度和浓度成层性共同作用的结果,但对这一假说的验证还有待于进一步的现场观测和机制分析。计算所得的再悬浮发生的周期性与实测悬沙浓度的周期性相符,而且最大悬沙浓度的出现滞后于最大再悬浮通量,说明再悬浮作用对水层中悬沙浓度的变化具有重要影响。  相似文献   
319.
水下视频图像压缩一直是有限带宽水声信道实时传输海量视频数据的关键技术之一。本文首先介绍了目前水下机器人和水下视频图像压缩研究存在的主要问题,并综合分析了目前几种高效视频压缩方法的特点并探讨了进一步研究的方向。此外,根据水下视频的成像特点,提出了高效的全局与局部运动混合补偿方案和基于小波变换的预处理方法。初步实验结果表明:本文提出的预处理方法可以有效去除视频图像中存在的大量视觉冗余和空间冗余,提出的混合运动补偿方案可以获得很高的压缩编码效率;但必须进一步研究快速、有效的全局运动估计方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号