首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81篇
  免费   10篇
  国内免费   2篇
测绘学   1篇
大气科学   4篇
地球物理   45篇
地质学   9篇
自然地理   34篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   6篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   6篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2004年   5篇
  2003年   6篇
  2002年   2篇
  2001年   6篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   6篇
  1995年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
31.
风力作用下沙粒蠕移概率的转化特征   总被引:3,自引:1,他引:2  
建立了沙粒从蠕移状态向静止、跳跃转化以及继续滚动的概率模型.根据滚动沙粒简化的运动方程,结合两个关键随机变量-沙床表面风速和床面位置参数,求出了静止概率、滚动概率、跳跃概率随时间变化的表达式.在此基础上通过对时间求极限得到稳定情况下沙粒处于三种运动状态的概率.利用沙粒蠕移概率除蠕移概率和跃移概率之和,得到沙粒相对蠕移概率,并以此反映蠕移输沙量占总输沙量的比例.计算结果表明,三种转移概率是时间、沙床表面风速和沙粒直径的函数.静止概率随时间增大而增大,但随粒径增大而减小;滚动概率随时间的变化根据粒径的不同表现出不同的特点.粒径较小,滚动概率随时间的增大先增大后减小,存在极大值;粒径较大时,滚动概率随时间的增大逐渐增大,不存在峰值.跳跃概率随时间的增大而增大.三种概率达到稳定状态所需要的时间随粒径的增大而减少.同粒径的沙粒在相同的时间内,三种转移概率会趋于定值.稳定概率和相对蠕移概率由沙床表面风速分布和粒径大小来确定,具有很大的取值范围;静止稳定概率和跳跃稳定概率随粒径的增大分别增大和减小;而滚动稳定概率随粒径的增大逐步先增大后减小.在一定风速条件下,相对蠕移概率随风速和方差的变化都不大,沙粒粒径是最主要的影响因素.  相似文献   
32.
Dust emission by wind erosion in surface is a serious problem in many arid regions around the world,and it is harmful to the ecological environment,human health,and social economy.To monitor the characteristics of saltation activity and to calculate the threshold wind velocity and sediment discharge under field conditions have significance on the research of dust emission by wind erosion.Therefore,a field experiment was conducted over the flat sand in the hinterland of the Taklimakan Desert.One sampling system was installed on the flat sand surface at Tazhong,consisting of a meteorological tower with a height of 2 m,a piezoelectric saltation sensor(Sensit),and a Big Spring Number Eight(BSNE) sampler station.Occurrence of saltation activity was recorded every second using the Sensit.Each BSNE station consisted of five BSNE samplers with the lowest sampler at 0.05 m and the highest sampler at 1.0 m above the soil surface.Sediment was collected from the samplers every 24 h.It is found that saltation activity was detected for only 21.5% of the hours measured,and the longest period of saltation activity occurring continuously was not longer than 5 min under the field conditions.The threshold wind velocity was variable,its minimum value was 4.9 m s 1,the maximum value was 9.2 m s 1,and the average value was 7.0 m s 1.The threshold wind velocity presented a positive linear increase during the measurement period.The observation site had a sediment discharge of 82.1 kg m 1 over a period of 24 h.Based on hourly saltation counts,hourly sediment discharge was estimated.Overall,there was no obvious linear or other functional relationship between the hourly sediment discharge and wind velocity.The results show that the changes of sediment discharge do not quite depend on wind velocity.  相似文献   
33.
Existing formulations for bed sediment entrainment under steady flow are incapable of explaining two well-documented observational facts: (i) water flow requires considerably higher dimensionless shear stresses to move the bed grains than air flow; and (ii) under open channel flow, steep granular beds are more stable than beds with milder slopes. These two facts, together with recent direct measurements of forces acting on bed grains giving time-mean negative drags ( Schmeeckle et al. , 2007 ), question the conventional models of forces used so far. Here, fluid forces acting on bed particles are treated in a new way in order to take into consideration the fundamental interference effects, thus obtaining appropriate magnitude estimates that exhibit good agreement with direct force measurements by Schmeeckle et al. (2007) . Impulsive pressure fluctuations generated by turbulence are shown to be capable of dislodging the bed grains by saltation under air flow, whereas they can only produce a rocking effect under water flow, thus explaining the first anomaly. On the other hand, previous work by the authors allows a direct estimate of space averaged time-mean drag and lift forces exerted on bed grains. Both components have the same order of magnitude but, contrary to the common belief, the mean lift is downward, which provides an explanation for the second anomaly. Finally, spatial disturbances of pressure, both positive and negative, appear to generate maximum, persistent, local forces considerably greater than mean forces, thus allowing an explanation for the observed negative time-mean drag. A new formula for predicting incipient motion of sediment under open channel flow is derived, which incorporates all dynamically significant effects and gives very good agreement with observation for the entire range of bed slopes.  相似文献   
34.
To elucidate splash erosion processes under natural rainfall conditions, temporal variations in splash detachment were observed using a piezoelectric saltation sensor (H11B; Sensit Co., Portland, ND, USA). Preliminary laboratory tests of Sensit suggested that they were suitable for field observations. Field observations were conducted between July and September 2006 in 21‐ and 36‐year‐old Japanese cypress (Chamaecyparis obtusa) plantations with mean stand heights of 9·2 m and 17·4 m, respectively. Splash detachment (in g m?2) was measured seven times using splash cups, and raindrop kinetic energy (in J m?2 mm?1) in both stands was measured using laser drop‐sizing (LD) gauges. Sensit was installed to record saltation counts, which were converted to temporal data of splash detachment (splash rate; in g m?2 10 min?1) using the relationship between splash detachment and saltation counts. Surface runoff was monitored using runoff plots of 0·5 m width and 2·0 m length to obtain temporal data of flow depth (in millimeters). Both total splash detachment and raindrop kinetic energy were larger in the older stand. Increased splash rates per unit throughfall were found in both stands after rainless durations longer than approximately one day in both stands. However, a lower splash rate was found in the 21‐year stand after rainfall events. During extreme rainstorms, the 21‐year stand showed a low runoff rate and a decline in the splash rate, while the 36‐year stand showed a higher splash rate and increased flow depth. The piezoelectric sensor proved to be a useful means to elucidate splash erosion processes in field conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
35.
粗糙床面风廓线的转折特征及其物理意义   总被引:4,自引:3,他引:1  
梅凡民  江姗姗  王涛 《中国沙漠》2010,30(2):217-227
为了进一步认识粗糙床面空气动力学粗糙度的物理意义,理解空气动力学粗糙度对动量传递和跃移起动的影响机制,从风洞试验测定的粗糙床面风廓线转折特征入手,分析了粗糙床面的空气动力学性质并提出了内边界层动量传递及近壁区沙粒起动的可能机制。结果表明,细高粗糙元(方向比率在4~20之间)和孔隙粗糙元(孔隙度在0.15~0.75)风廓线呈现4个转折段,对应的湍流垂直分层为近壁区-尾涡层(Z≤0.15H~0.5H)、内边界层-尾涡层过渡层(0.15H≤Z≤0.75H)、内边界层(0.3H~0.75H≤Z≤1.2H~6H)和内边界层与外边界层过渡层等。粗矮粗糙元(粗糙元的方向比率在0.4~1.25之间)风廓线存在几个转折段,对应气流垂直分层为近壁区-尾涡层(Z≤1H~1.5H)和内边界层(1H~1.5H≤Z≤7H~35H)等。细高粗糙元和孔隙粗糙元覆盖21组床面(侧影盖度在0.007~0.50,粗糙元的高度在10~100 mm)的内边界层内空气动力学粗糙度在0.07~30.74 mm之间,比内边界层以上或以下过渡层的空气动力学粗糙度高几个数量级到数倍;内边界层摩阻风速的0.50~1.66 m\5s-1之间,是内边界层以下过渡层的1.5~10倍、内边界层以上过渡层的摩阻风速的1.1~2.8倍。内边界层的空气动力学粗糙度和摩阻风速分别代表了粗糙床面对气流阻力特征和湍流切应力。内边界层以下过渡层湍流切应力与粗糙元之间光滑地表所受切应力关系不大,而近壁层切应力与光滑地表所受切应力直接相关。近壁层猝发过程上抛运动和内边界层湍流猝发过程下扫运动耦合关系是内边界层的一部分动量传递到近壁区并导致沙粒起动的可能机制。  相似文献   
36.
The flow of glass dust particles in air was investigated experimentally over a flat bed in a wind tunnel. Particle concentrations were measured by light scattering diffusion (LSD) and digital image processing. It was verified that saltation is the main mechanism for ejection of dust particles. Vertical mean dust concentrations for ‘pure dust’ and two mixtures of dust and saltating glass particles were determined and analysed. The experiments confirmed that for the ‘pure dust’ configuration the mean concentration decreases as a power function with height. For the mixture configurations and for free stream velocities close to the threshold velocity, the mean concentration also decreases in a power function. For higher velocities, mean concentration decreases respectively as a power function or exponential function for large and small ratios of the dust:saltating particles respectively. The exponent of the power law reflects the dust:particle ratio and the free stream flow velocity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
37.
38.
滑坡预报的几个基本问题   总被引:19,自引:0,他引:19  
在滑坡预报研究中,必须首先解决与预报密切相关的一些基本问题。否则,往往导致预报误差很大或者预报失败。根据作者的初步探索,本文重点讨论了滑坡预报的分类及定义、预报参数及其监测点的选取、变形突变现象的分析与处理以及斜坡变形阶段的定量判断等基本问题。  相似文献   
39.
Estimates of the wind shear stress exerted on Earth's surface using the fully rough form of the law‐of‐the‐wall are a function of the aerodynamic roughness length, z0. Accurate prediction of aeolian sediment transport rates, therefore, often requires accurate estimates of z0. The value of z0 is determined by the surface roughness and the saltation intensity, both of which can be highly dynamic. Here we report field measurements of z0 values derived from velocity profiles measured over an evolving topography (i.e. sand ripples). The topography was measured by terrestrial laser scanning and the saltation intensity was measured using a disdrometer. By measuring the topographic evolution and saltation intensity simultaneously and using available formulae to estimate the topographic contribution to z0, we isolated the contribution of saltation intensity to z0 and document that this component dominates over the topographic component for all but the lowest shear velocities. Our measurements indicate that the increase in z0 during periods of saltation is approximately one to two orders of magnitude greater than the increase attributed to microtopography (i.e. evolving sand ripples). Our results also reveal differences in transport as a function of grain size. Each grain‐size fraction exhibited a different dependence on shear velocity, with the saltation intensity of fine particles (diameters ranging from 0.125 to 0.25 mm) saturating and eventually decreasing at high shear velocities, which we interpret to be the result of a limitation in the supply of fine particles from the bed at high shear velocities due to bed armoring. Our findings improve knowledge of the controls on the aerodynamic roughness length and the grain‐size dependence of aeolian sediment transport. The results should contribute to the development of improved sediment transport and dust emission models. © 2018 John Wiley & Sons, Ltd.  相似文献   
40.
The pipe microphone has been shown to be an effective means for monitoring bedload transport in mountain streams. It is commonly installed perpendicular to the flow direction on a stable river bed, such as that of a check dam. Acoustic pulses caused by bedload collisions with the pipe are detected by a microphone. However, bedload particles saltating over the pipe remain undetected. To overcome this disadvantage, we installed a horizontal as well as a vertical pipe microphone in the Ashi‐arai‐dani supercritical channel located in the Hodaka mountain range, Japan. The vertical pipe was installed on the wall of the channel and the horizontal pipe was installed on the channel bed. The acoustic response of the horizontal pipe is expected to be larger than that of the vertical pipe, because the bedload concentration decreases with increasing height above the bed. However, at high amplifications, the peak pulse value from the vertical pipe is higher than that from the horizontal pipe. We explain this observation as follows: under high bedload discharge conditions, the pulses of the horizontal pipe are saturated but those of the vertical pipe are not. We proposed a ratio (Rhv) between the pulses detected by these sensors, and applied this ratio for calibrating the contemporaneous pulses detected by a microphone located immediately upstream of a bedload slot sampler. Indeed the Rhv‐corrected pulses correlated well with the bedload discharge calculated from the sampler, supporting our explanation. We conclude that bedload monitoring using concomitant vertical and horizontal pipe microphones can be used to calibrate centrally located pipe microphones when the bedload concentration is approximately homogeneous laterally across the width of the channel cross‐section, and thereby represent bedload discharges more accurately than with only a single pipe microphone. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号