首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3263篇
  免费   489篇
  国内免费   637篇
测绘学   48篇
大气科学   573篇
地球物理   1365篇
地质学   933篇
海洋学   880篇
天文学   23篇
综合类   106篇
自然地理   461篇
  2024年   15篇
  2023年   46篇
  2022年   86篇
  2021年   104篇
  2020年   139篇
  2019年   152篇
  2018年   122篇
  2017年   132篇
  2016年   133篇
  2015年   135篇
  2014年   170篇
  2013年   241篇
  2012年   142篇
  2011年   195篇
  2010年   158篇
  2009年   253篇
  2008年   254篇
  2007年   254篇
  2006年   197篇
  2005年   157篇
  2004年   187篇
  2003年   144篇
  2002年   117篇
  2001年   105篇
  2000年   108篇
  1999年   117篇
  1998年   62篇
  1997年   80篇
  1996年   61篇
  1995年   43篇
  1994年   51篇
  1993年   34篇
  1992年   34篇
  1991年   23篇
  1990年   27篇
  1989年   21篇
  1988年   12篇
  1987年   9篇
  1986年   11篇
  1985年   10篇
  1984年   12篇
  1983年   13篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有4389条查询结果,搜索用时 609 毫秒
151.
The processes of long‐range granitic magma transfer from mid‐ and lower crustal anatectic zones to upper crustal pluton emplacement sites remain controversial in the literature. This is partly because feeder networks that could have accommodated this large‐scale magma transport remain elusive in the field. Existing granite ascent models are based largely on numerical and theoretical studies that seek to demonstrate the viability of fracture‐controlled magma transport through dykes or self‐propagating hydrofractures. In most cases, the models present very little supporting field evidence, such as sufficiently voluminous near‐ or within‐source magma accumulations, to support their basic premises. We document large (deca‐ to hectometre‐scale), steeply dipping and largely homogeneous granite lenses in suprasolidus (~5 kbar, ~750 °C) mid‐crustal rocks in the Damara Belt in Namibia. The lenses are surrounded by and connected to shallowly dipping networks of stromatic leucogranites in the well‐layered gneisses of the deeply incised Husab Gorge. The outcrops define a four‐stage process from (i) the initial formation and growth of large, subvertical magma‐filled lenses as extension fractures developed at high angles to the subhorizontal regional extension in relatively competent wall‐rock layers. This stage is followed by (ii) the simultaneous lateral inflation and (iii) subcritical vertical growth of the lenses to a critical length that (iv) promotes fracture destabilization, buoyancy‐driven upward fracture mobilization and, consequently, vertical magma transport. These field observations are compared with existing numerical models and are used to constrain, by referring to the dimensions of the largest preserved inflated leucogranite lens, an estimate of the minimum fracture length (~100 m) and volume (~2.4 × 105 m3) required to initiate buoyancy‐driven brittle fracture propagation in this particular mid‐crustal section. The critical values and field relationships compare favourably with theoretical models of magma ascent along vertical self‐propagating hydrofractures which close at their tails during propagation. This process leaves behind subtle wake‐like structures and thin leucogranite trails that mark the path of magma ascent. Reutilization of such conduits by repeated inflation and drainage is consistent with the episodic accumulation and removal of magma from the mid‐crust and is reflected in the sheeted nature of many upper crustal granitoid plutons.  相似文献   
152.
Groundwater arsenic (As) presents a public health risk of great magnitude in densely populated Asian delta regions, most acutely in the Bengal Basin (West Bengal, India and Bangladesh). Research has focused on the sources, mobilisation, and heterogeneity of groundwater As, but a consistent explanation of As distribution from local to basin scale remains elusive. We show for the Bengal Aquifer System that the numerous, discontinuous silt‐clay layers together with surface topography impose a hierarchical pattern of groundwater flow, which constrains As penetration into the aquifer and controls its redistribution towards discharge zones, where it is re‐sequestered to solid phases. This is particularly so for the discrete periods of As release to groundwater in the shallow subsurface associated with sea level high‐stand conditions of Quaternary inter‐glacial periods. We propose a hypothesis concerning groundwater flow ( S ilt‐clay layers I mpose H ierarchical groundwater flow patterns constraining A rsenic progression [SIHA]), which links consensus views on the As source and history of sedimentation in the basin to the variety of spatial and depth distributions of groundwater As reported in the literature. SIHA reconciles apparent inconsistencies between independent, in some cases contrasting, field observations. We infer that lithological and topographic controls on groundwater flow, inherent to SIHA, apply more generally to deltaic aquifers elsewhere. The analysis suggests that groundwater As may persist in the aquifers of Asian deltas over thousands of years, but in certain regions, particularly at deeper levels, As will not exceed low background concentrations unless groundwater flow systems are short‐circuited by excessive pumping.  相似文献   
153.
An attempt has been made to develop a holistic understanding of upwelling and downwelling along the south-west coast of India. The main objective was to elucidate the roles of different forcings involved in the vertical motion along this coast. The south-west coast of India was characterized by upwelling during the south-west monsoon (May to September) and by downwelling during the north-east monsoon and winter (November to February). The average vertical velocity calculated along the south-west coast from the vertical shift of the 26?°C isotherm is 0.57?m/day during upwelling and 0.698?m/day during downwelling. It was concluded that upwelling along the south-west coast of India is driven by offshore Ekman transport due to the alongshore wind, Ekman pumping, horizontal divergence of currents and by the propagation of coastally trapped waves. Whereas downwelling along the coast is driven only by convergence of currents and the propagation of coastally trapped Kelvin waves. Along the west coast of India, the downwelling-favorable Kelvin waves come from the equator and upwelling-favorable waves come from the Gulf of Mannar region.  相似文献   
154.
Watershed structure influences the timing, magnitude, and spatial location of water and solute entry to stream networks. In turn, stream reach transport velocities and stream network geometry (travel distances) further influence the timing of export from watersheds. Here, we examine how watershed and stream network organization can affect travel times of water from delivery to the stream network to arrival at the watershed outlet. We analysed watershed structure and network geometry and quantified the relationship between stream discharge and solute velocity across six study watersheds (11.4 to 62.8 km2) located in the Sawtooth Mountains of central Idaho, USA. Based on these analyses, we developed stream network travel time functions for each watershed. We found that watershed structure, stream network geometry, and the variable magnitude of inputs across the network can have a pronounced affect on water travel distances and velocities within a stream network. Accordingly, a sample taken at the watershed outlet is composed of water and solutes sourced from across the watershed that experienced a range of travel times in the stream network. We suggest that understanding and quantifying stream network travel time distributions are valuable for deconvolving signals observed at watershed outlets into their spatial and temporal sources, and separating terrestrial and in‐channel hydrological, biogeochemical, and ecological influences on in‐stream observations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
155.
Vertical 2D slice laboratory experiments were carried out in homogenous and layered sand tanks to elucidate the effects of a highly permeable (coarse‐grained sand) interlayer on seawater intrusion and transport of contaminants to a coastal sea. Tidal fluctuations produced oscillations in the seawater–freshwater transition zone, fluctuations of the contaminant infiltration rate and a zigzag contaminant plume outline. The seawater wedge became discontinuous at the (vertical) edges of the interlayer because of increased lateral movement of the seawater–freshwater interface within the interlayer. The contaminant plume formed a tail within the interlayer depending on the tidal stage, and similar to the wedge, its movement was accentuated. A simple analytical model that neglected vertical flow reliably predicted steady‐state seawater intrusion into the coastal aquifer. Numerical modeling was used to gain insight into the groundwater hydrodynamics and contaminant migration. The numerical results confirmed the experimental findings, i.e. that a highly permeable interlayer can provide a rapid transit path for contaminants to reach the seaward boundary and that the interlayer amplifies the effects of tidal fluctuations, resulting in wider transition zones for the seawater wedge and contaminant plume. Numerical simulations further showed that, with increasing interlayer hydraulic conductivity, the maximum seawater intrusion distance inside the interlayer increases approximately linearly. For the fixed‐head contaminant injection condition used, the model showed that contaminant infiltration increases approximately logarithmically with increasing interlayer hydraulic conductivity (other factors held fixed). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
156.
157.
利用欧洲中心气候再分析资料和美国国家冰雪数据中心北极海冰面积资料,分析了夏季北极海冰面积与前期大气经向热量输送年际变化的联系。结果表明:6月北半球中高纬大气的经向热量输送以瞬变热量形式为主,其中巴芬湾西部(B区)和格陵兰岛东部(G区)是瞬变热量向极区传输的两个通道,二者之间存在反位相的协同变化,且这种协同变化与夏季北极海冰面积变化密切相关。可能的机制为:6月,AD、AO和NAO三种北极大气环流型能够引起巴芬湾西部和格陵兰岛东部瞬变热量输送的协同变化,这种协同变化通过涡旋动力作用激发夏季极区大气表现为AD异常,同时影响途经区域的气温,从而通过热动力作用影响夏季北极海冰。将向极区输送的热量称为暖输送,从极区输出的热量为冷输送,则上述两个区域的瞬变热量协同输送可分为三种情况:B暖G冷、B冷G暖、B和G均冷,而B和G均暖的情况十分罕见。当B区向极区输入、G区输出热量时,有利于太平洋扇区和喀拉海的海冰偏少;当G区输入、B区输出热量时,利于喀拉海和拉普捷夫海海冰偏少;当B区和G区均输出热量时,利于波佛特海南部、喀拉海和拉普捷夫海海冰偏多,反之则相反。  相似文献   
158.
黑潮是北太平洋副热带环流系统的一支重要的西边界流。前人对不同流段黑潮的季节和年际变化进行了诸多研究,然而基于不同数据所得结论仍存在差异,尤其是不同模式计算所得流量差别很大,而且以往研究往往着眼于某一流段,对不同流段黑潮变化之间的异同及其原因涉及较少。本文基于卫星高度计数据,评估了OFES(Ocean generalcir culation model For the Earth Simulator)和HYCOM(Hybrid Coordinate Ocean Model)两个模式对吕宋岛和台湾岛以东黑潮季节与年际变化的模拟能力,进而对两个海域黑潮变化的异同及其物理机制进行了分析。结果表明:HYCOM模式对黑潮季节变化的模拟较好,而OFES模式对黑潮年际变化的模拟较好。吕宋岛以东黑潮和台湾岛以东黑潮在季节与年际尺度上的变化规律均不相同,且受不同动力过程控制。吕宋岛以东黑潮呈现冬春季强而秋季弱的变化规律,主要受北赤道流分叉南北移动的影响;而台湾岛以东黑潮呈现夏季强冬季弱的变化特点,主要受该海区反气旋涡与气旋涡相对数目的季节变化影响。在年际尺度上,吕宋岛以东黑潮与北赤道流分叉及风应力旋度呈负相关,当风应力旋度超前于流量4个月时相关系数达到了-0.56;而台湾岛以东黑潮的流量变化则受制于副热带逆流区涡动能的变化,且滞后于涡动能9个月时达到最大正相关,相关系数为0.44。本研究对于深入理解不同流段黑潮的多尺度变异规律及其对邻近海区环流与气候的影响具有重要意义,同时对于黑潮研究的数值模式选取具有重要参考价值。  相似文献   
159.
李嘉  李艳芳  张华 《海洋科学》2018,42(5):155-162
微塑料作为一种新型污染物, 在海洋中广泛分布, 给海洋生态系统带来潜在的生态风险。充分认识海洋微塑料迁移途径和归趋行为, 掌握其运移规律及影响因素, 能够为治理海洋微塑料污染提供理论指导和科学依据。本文综述了微塑料在海洋中物理迁移过程的研究进展, 系统分析了影响微塑料运移过程的各种影响因素, 包括风、浪、流等海洋动力过程, 生物作用和塑料的粒径、形状等物理性质; 并对该领域未来的研究工作进行了展望。  相似文献   
160.
Understanding groundwater–surface water exchange in river banks is crucial for effective water management and a range of scientific disciplines. While there has been much research on bank storage, many studies assume idealized aquifer systems. This paper presents a field‐based study of the Tambo Catchment (southeast Australia) where the Tambo River interacts with both an unconfined aquifer containing relatively young and fresh groundwater (<500 μS/cm and <100 years old) and a semi‐confined artesian aquifer containing old and saline groundwater (electrical conductivity > 2500 μS/cm and >10 000 years old). Continuous groundwater elevation and electrical conductivity monitoring within the different aquifers and the river suggest that the degree of mixing between the two aquifers and the river varies significantly in response to changing hydrological conditions. Numerical modelling using MODFLOW and the solute transport package MT3DMS indicates that saline water in the river bank moves away from the river during flooding as hydraulic gradients reverse. This water then returns during flood recession as baseflow hydraulic gradients are re‐established. Modelling also indicates that the concentration of a simulated conservative groundwater solute can increase for up to ~34 days at distances of 20 and 40 m from the river in response to flood events approximately 10 m in height. For the same flood event, simulated solute concentrations within 10 m of the river increase for only ~15 days as the infiltrating low‐salinity river water drives groundwater dilution. Average groundwater fluxes to the river stretch estimated using Darcy's law were 7 m3/m/day compared with 26 and 3 m3/m/day for the same periods via mass balance using Radon (222Rn) and chloride (Cl), respectively. The study shows that by coupling numerical modelling with continuous groundwater–surface water monitoring, the transient nature of bank storage can be evaluated, leading to a better understanding of the hydrological system and better interpretation of hydrochemical data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号