首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2530篇
  免费   372篇
  国内免费   635篇
测绘学   33篇
大气科学   712篇
地球物理   682篇
地质学   612篇
海洋学   509篇
天文学   573篇
综合类   78篇
自然地理   338篇
  2024年   14篇
  2023年   26篇
  2022年   52篇
  2021年   72篇
  2020年   104篇
  2019年   127篇
  2018年   87篇
  2017年   123篇
  2016年   105篇
  2015年   128篇
  2014年   151篇
  2013年   226篇
  2012年   131篇
  2011年   132篇
  2010年   106篇
  2009年   215篇
  2008年   197篇
  2007年   207篇
  2006年   184篇
  2005年   164篇
  2004年   150篇
  2003年   124篇
  2002年   112篇
  2001年   99篇
  2000年   92篇
  1999年   75篇
  1998年   83篇
  1997年   51篇
  1996年   39篇
  1995年   20篇
  1994年   32篇
  1993年   26篇
  1992年   13篇
  1991年   9篇
  1990年   11篇
  1989年   4篇
  1988年   14篇
  1987年   4篇
  1986年   6篇
  1985年   8篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有3537条查询结果,搜索用时 15 毫秒
71.
72.
73.
Studies indicate that the climate has experienced a dramatic change in the Heihe River Basin with scope of temperature rise reaching 0.5-1.1oC in the 1990s compared to the mean value of the period 1960-1990, precipitation increased 18.5 mm in the 1990s compared to the 1950s, and 6.5 mm in the 1990s compared to the mean value of the period 1960-1990, water resources decreased 2.6×108 m3 in the 1990s compared to the 1950s, and 0.4×108 m3 in the 1990s compared to the mean value of the period 1960-1990. These changes have exerted a greater effect on the local environment and socio-economy, and also made the condition worsening in water resources utilizations in the Heihe Rver Basin.  相似文献   
74.
As surface exchange processes are highly non-linear and heterogeneous in space and time, it is important to know the appropriate scale for the reasonable prediction of these exchange processes. For example, the explicit representation of surface variability has been vital in predicting mesoscale weather events such as late-afternoon thunderstorms initiated by latent heat exchanges in mid-latitude regions of the continental United States. This study was undertaken to examine the effects of different spatial scales of input data on modeled fluxes, so as to better understand the resolution needed for accurate modeling. A statistical procedure was followed to select two cells from the Southern Great Plains 1997 hydrology experiment region, each 20 km×20 km, representing the most homogeneous and the most heterogeneous surface conditions (based on soil and vegetation) within the study region. The NOAH-OSU (Oregon State University) Land Surface Model (LSM) was employed to estimate surface energy fluxes. Three scales of study (200 m, 2 and 20 km) were considered in order to investigate the impacts of the aggregation of input data, especially soil and vegetation inputs, on the model output. Model results of net radiation and latent, sensible and ground heat fluxes were compared for the three scales. For the heterogeneous area, the model output at the 20-km resolution showed some differences when compared with the 200-m and 2-km resolutions. This was more pronounced in latent heat (12% decrease), sensible heat (22% increase), and ground heat flux (44% increase) estimation than in net radiation. The scaling effects were much less for the relatively homogeneous land area with 5% increase in sensible heat and 4% decrease in ground heat flux estimation. All of the model outputs for the 2- and 20-km resolutions were in close agreement. The results suggested that, for this study region, soils and vegetation input resolution of about 2 km should be chosen for realistic modeling of surface exchange processes. This resolution was sufficient to capture the effects of sub-grid scale heterogeneity, while avoiding the data and computational difficulties associated with higher spatial resolutions.  相似文献   
75.
During strong ground motion it is expected that extended structures (such as bridges) are subjected to excitation that varies along their longitudinal axis in terms of arrival time, amplitude and frequency content, a fact primarily attributed to the wave passage effect, the loss of coherency and the role of local site conditions. Furthermore, the foundation interacts with the soil and the superstructure, thus significantly affecting the dynamic response of the bridge. A general methodology is therefore set up and implemented into a computer code for deriving sets of appropriately modified time histories and spring–dashpot coefficients at each support of a bridge with account for spatial variability, local site conditions and soil–foundation–superstructure interaction, for the purposes of inelastic dynamic analysis of RC bridges. In order to validate the methodology and code developed, each stage of the proposed procedure is verified using recorded data, finite‐element analyses, alternative computer programs, previous research studies, and closed‐form solutions wherever available. The results establish an adequate degree of confidence in the use of the proposed methodology and code in further parametric analyses and seismic design. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
76.
The methodology for dealing with spatial variability of ground motion, site effects and soil–structure interaction phenomena in the context of inelastic dynamic analysis of bridge structures, and the associated analytical tools established and validated in a companion paper are used herein for a detailed parametric analysis, aiming to evaluate the importance of the above effects in seismic design. For a total of 20 bridge structures differing in terms of structural type (fundamental period, symmetry, regularity, abutment conditions, pier‐to‐deck connections), dimensions (span and overall length), and ground motion characteristics (earthquake frequency content and direction of excitation), the dynamic response corresponding to nine levels of increasing analysis complexity was calculated and compared with the ‘standard’ case of a fixed base, uniformly excited, elastic structure for which site effects were totally ignored. It is concluded that the dynamic response of RC bridges is indeed strongly affected by the coupling of the above phenomena that may adversely affect displacements and/or action effects under certain circumstances. Evidence is also presented that some bridge types are relatively more sensitive to the above phenomena, hence a more refined analysis approach should be considered in their case. Copyright @ 2003 John Wiley & Sons, Ltd.  相似文献   
77.
Nozzle‐type rainfall simulators are commonly used in hydrologic and soil erosion research. Simulated rainfall intensity, originating from the nozzle, increases as the distance between the point of measurement and the source is decreased. Hence, rainfall measured using rain gauges would systematically overestimate the rainfall received at the ground level. A simple model was developed to adjust rainfall measured anywhere under the simulator to plot‐wide average rainfall at the ground level. Nozzle height, plot width, gauge diameter and height, and gauge location are required to compute this adjustment factor. Results from 15 runs at different rain intensities and durations, and with different rain gauge layouts, showed that a simple average of measured rain would overestimate the plot‐wide rain by about 20 per cent. Using the adjustment factor to convert measured rainfall for individual gauges before averaging improved the estimate of plot‐wide rainfall considerably. For the 15 runs considered, overall discrepancy between actual and measured rain is reduced to less than 1 per cent with a standard error of 0·97 mm. This model can be easily tested in the ?eld by comparing rainfall depths of different sized gauges. With the adjustment factor they should all give very similar values. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
78.
This paper demonstrates the advantages of using inclined stereographic projections in kinematic analysis of rock blocks in discontinuous rock masses. Some examples of limiting cases are presented. The application of inclined projections is illustrated by its use in a mine slope in Brazil. It is clear from the discussion of these examples that inclined hemisphere projections provide better results than horizontal projections. It is also demonstrated that horizontal projections can lead to incorrect results in limiting cases.  相似文献   
79.
 The structure of coesite has been determined at ten pressures up to a maximum of 8.68 GPa by single-crystal X-ray diffraction. The dominant mechanism of compression is the reduction of four of the five independent Si–O–Si angles within the structure. There is no evidence of the fifth linkage, Si1–O1–Si1, deviating from 180°. Some Si–O bond distances also decrease by up to 1.6% over the pressure range studied. The pattern of Si–O–Si angle reduction amounts to a rotation of the Si2 tetrahedron around the [001] direction. This rotation induces significant internal deformation of the Si1 tetrahedron. Comparison of the experimental data with rigid-unit distance least-squares simulations of coesite suggests that this pattern of compression, the anomalous positive values of both s23 and K′′ in the equation of state of coesite, its high elastic anisotropy and the unusual straight Si1–O1–Si1 linkage within the structure are all consequences of the connectivity of the tetrahedral framework. Received: 11 July 2002 / Accepted: 14 January 2003 Acknowledgements The help of Christian Baerlocher of ETH Zurich in providing both the DLS-76 software and advice in its use is gratefully acknowledged, as are discussions with Paul Ribbe of Virginia Tech and the comments of two anonymous reviewers. The data analysis was supported by the National Science Foundation under grant EAR-0105864 to N.L. Ross and R.J. Angel.  相似文献   
80.
In the metamorphic cores of many orogenic belts, large macroscopic folds in compositional layering also appear to fold one or more pervasive matrix foliations. The latter geometry suggests the folds formed relatively late in the tectonic history, after foliation development. However, microstructural analysis of four examples of such folds suggests this is not the case. The folds formed relatively early in the orogenic history and are the end product of multiple, near orthogonal, overprinting bulk shortening events. Once large macroscopic folds initiate, they may tighten further during successive periods of sub-parallel shortening, folding or reactivation of foliations that develop during intervening periods of near orthogonal shortening. Reactivation of the compositional layering defining the fold limbs causes foliation to be rotated into parallelism with the limbs.Multiple periods of porphyroblast growth accompanied the multiple phases of deformation that postdated the initial development of these folds. Some of these phases of deformation were attended by the development of large numbers of same asymmetry spiral-shaped inclusion trails in porphyroblasts on one limb of the fold and not the other, or larger numbers of opposite asymmetry spirals on the other limb, or similar numbers of the same asymmetry spirals on both limbs. Significantly, the largest disparity in numbers from limb to limb occurred for the first of these cases. For all four regional folds examined, the structural relationships that accompanied these large disparities were identical. In each case the shear sense operating on steeply dipping foliations was opposite to that required to originally develop the fold. Reactivation of the folded compositional layering was not possible for this shear sense. This favoured the development of sites of approximately coaxial shortening early during the deformation history, enhancing microfracture and promoting the growth of porphyroblasts on this limb in comparision to the other. These distributions of inclusion trail geometries from limb to limb cannot be explained by porphyroblast rotation, or folding of pre-existing rotated porphyroblasts within a shear zone, but can be explained by development of the inclusion trails synchronous with successive sub-vertical and sub-horizontal foliations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号