首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   30篇
  国内免费   44篇
测绘学   4篇
地球物理   48篇
地质学   192篇
海洋学   11篇
天文学   3篇
综合类   4篇
自然地理   23篇
  2024年   1篇
  2023年   4篇
  2022年   2篇
  2021年   6篇
  2020年   9篇
  2019年   6篇
  2018年   8篇
  2017年   5篇
  2016年   19篇
  2015年   10篇
  2014年   7篇
  2013年   17篇
  2012年   4篇
  2011年   5篇
  2010年   12篇
  2009年   11篇
  2008年   15篇
  2007年   10篇
  2006年   19篇
  2005年   16篇
  2004年   7篇
  2003年   12篇
  2002年   8篇
  2001年   7篇
  2000年   10篇
  1999年   8篇
  1998年   5篇
  1997年   7篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   5篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有285条查询结果,搜索用时 31 毫秒
51.
The magnetic method is the oldest and one of the most widely used geophysical techniques for exploring the earth’s subsurface. It is a relatively easy and inexpensive tool to employ, being applicable to a wide variety of subsurface exploration problems involving horizontal magnetic property variations occurring from near the base of the crust to within the uppermost meter of soil. Successful applications of the magnetic method require an in-depth understanding of its basic principles and careful field work, data reduction, and interpretation. Commonly, interpretations are limited to qualitative approaches which simply map the spatial location of anomalous subsurface conditions, but under favourable circumstances the technological status of the method will permit more quantitative interpretations involving specification of the nature of the anomalous sources. No other geophysical method provides critical input to such a wide variety of problems. However, seldom does the magnetic method provide the complete answer to an investigation problem. As a result, it is generally used in concert with other geophysical and geological data to limit its interpretational ambiguities.  相似文献   
52.
We investigated the Cretaceous Potiguar Basin in the Equatorial margin of Brazil to understand how the geometry of major faults evolved to form the basin internal architecture. Previous studies pointed out that the rift is an asymmetrical half-graben elongated along the NE-SW direction. We used 2D seismic, well logs and 3D gravity modeling to analyze faults that constitute the rift boundary and determine their maximum displacement (Dmax) and length (L) ratio in the Potiguar Rift. We constrained the 3D gravity modeling with well data and the interpretation of seismic sections. The difference of the fault displacement and depth of the basement obtained in the gravity model is in the order of 10% compared to seismic and well data. The fault-growth curves allowed us to divide the faulted rift border into four main fault systems, which provide roughly similar Dmax/L ratios. Fault-growth curves suggest that a regional uniform tectonic mechanism influenced growth of these faults. These fault systems are composed of minor faults that we define as segments. The variation of the displacements along the fault segments indicates that the fault systems were formed independently during rift initiation and were linked by hard and soft linkages. The latter formed relay ramps. In the interconnection zones the Dmax/L ratios are highest due to interference of fault segment motions. We divided the evolution of the Potiguar Rift into five stages based on these ratios and correlated them with the major tectonic stages of the breakup between South America and Africa in the Early Cretaceous.  相似文献   
53.
The Western Volcanic Zone (WVZ) in Iceland is ∼120 km long and 40 km wide. It offers an opportunity to study rift zones in a local ultra-slow spreading area close to a hotspot. Fractures were mapped from aerial photographs and digital elevation models. Most surface fractures are located in the southern part of the WVZ. The majority of the fractures have a north-northeasterly orientation, some deviations occur from this, especially in the north part of the WVZ. Fracture orientations are therefore quite uniform in the southern, faster spreading part of the WVZ, but more irregular in the slower-spreading northern part. This suggests different stress fields in the north part, which could be due to the influence of the Hreppar microplate and possibly also due to stress fields induced by crustal deformation because of changes in glacial load in the area. Such glacially-induced stress fields may have similar or even more influence than crustal spreading in the slower spreading northern part of the WVZ. Lower fracture density towards the north within the WVZ suggests lower frequency of rifting events in the north part, in accordance with less spreading in the north as measured by GPS geodetic measurements.  相似文献   
54.
The Wollaston Forland Basin, NE Greenland, is a half-graben with a Middle Jurassic to Lower Cretaceous basin-fill. In this outcrop study we investigate the facies, architectural elements, depositional environments and sediment delivery systems of the deep marine syn-rift succession. Coarse-grained sand and gravel, as well as large boulders, were emplaced by rock-falls, debris flows and turbulent flows sourced from the immediate footwall. The bulk of these sediments were point-sourced and accumulated in a system of coalescing fans that formed a clastic wedge along the boundary fault system. In addition, this clastic wedge was supplied by a sand-rich turbidite system that is interpreted to have entered the basin axially, possibly via a prominent relay ramp within the main fault system. The proximal part of the clastic wedge consists of a steeply dipping, conformable succession of thick-bedded deposits from gravity flows that transformed down-slope from laminar to turbulent flow behaviour. Pervasive scour-and-fill features are observed at the base of the depositional slope of the clastic wedge, c. 5 km into the basin. These scour-fills are interpreted to have formed from high-density turbulent flows that were forced to decelerate and likely became subject to a hydraulic jump, forming plunge pools at the base of slope. The distal part of the wedge represents a basin plain environment and is characterised by a series of crude fining upward successions that are interpreted to reflect changes in the rate of accommodation generation and sediment supply, following from periodic increases in fault activity. This study demonstrates how rift basin physiography directly influences the behaviour of gravity flows. Conceptual models for the stratigraphic response to periodic fault activity, and the transformation and deposition of coarse-grained gravity flows in a deep water basin with strong contrasts in slope gradients, are presented and discussed.  相似文献   
55.
通常认为,大陆溢流玄武岩(CFB)、裂谷玄武岩(CRB)、板内玄武岩(WPB)均产于板内构造环境,其地球化学特征与OIB类似,源于富集的下地幔,与地幔柱的活动有关。本文利用GEOROC数据库对全球CFB、CRB和WPB数据进行挖掘,发现上述三类玄武岩判别图投图几乎落入了全部的构造环境域,有些甚至主要落入MORB和IAB区,而不是落入WPB区。结果表明原先的玄武岩判别图的判别功能值得商榷,尤其对大陆玄武岩来说,许多判别图都存在问题。全体CFB、CRB和WPB的地球化学成分变化巨大,暗示其源区具有强烈的不均一性:部分CFB、CRB和WPB来自富集的地幔柱,仍然具有经典的OIB的特征;部分来自MORB的源区,与MORB的再循环作用有关;部分来自岛弧岩石圈之下的亏损地幔源区,以强烈亏损Nb-Ta为特征,类似岛弧玄武岩的地球化学特征。许多地区的大陆玄武岩可分为低钛和高钛两类,低钛玄武岩大多是亏损或强烈亏损的,而高钛玄武岩通常是富集型的。本文的研究表明,富集型大陆玄武岩可能来自富集的下地幔,而亏损的和强烈亏损的玄武岩可能来自具有MORB或岛弧特征的软流圈地幔。进一步指出,源区性质可能是大陆玄武岩多样性的主控因素,其次为部分熔融程度、熔融深度、结晶分离、陆壳混染以及AFC过程。  相似文献   
56.
Playa lake systems tend to be overlooked archives of paleoenvironmental change due to the likelihood of a short and intermittent record of deposition. Groundwater-fed wetlands associated with these climate-sensitive playas, however, preserve changes in hydrologic budget and are thus valuable archives for semiarid regions. This study examines the paleoecological record of a groundwater-fed wetland from Lake Solai, Kenya. Biological proxies are used to reconstruct paleoenvironmental change and climate impacts over the past millennium. Dry conditions persisted between CE 1115 and 1490, followed by wetter conditions during the Little Ice Age. Near surface sediments indicate increasing anthropogenic impact through pastoralism.  相似文献   
57.
This study reviews the origin of two approximately east‐west‐trending synclines in the Lake Julius area at the eastern edge of the Leichhardt Rift. The genesis of one of these structures can be found in a north‐south shortening event (D1) that occurred at the beginning of the compressional Isan Orogeny (at ca 1600 Ma). Metasediments in a cross‐rift were rammed against a competent buttress defined by the pre‐existing rift architecture, producing the approximately east‐west‐trending Somaia Syncline and its associated axial‐plane slaty cleavage. In contrast, the Lake Julius Syncline was produced by reorientation of an originally approximately north‐south‐trending (D2) fold, in a transpressional zone adjacent to a strike‐slip fault, at the end of the Isan orogeny. The effects of late fault movement can be partially reconstructed, based on correlations assuming that regionally developed trains of upright folds formed during the peak of the Isan Orogeny (D2). These folds have been offset, as well as having been tightened and disrupted at the same time as fault movements took place. The overall pattern of movement in the Lake Julius region can be explained as the result of an ‘indentor’ ramming into the ancient edge of the Leichhardt Rift, which acted as a buttress.  相似文献   
58.
红海是地球上最年轻的大洋,其板块构造活动正处于威尔逊旋回的幼年期。红海南北两端分别连接着威尔逊旋回的胚胎期和终结期,即东非大裂谷和地中海。这一独特的地理位置和构造部位使其成为板块构造理论研究的圣地。本文通过对已有的地质、地球物理和地球化学资料进行综合分析,了解了红海地区的地形、重磁异常和沿脊的玄武岩地球化学组成等地质构造特征,探讨了红海裂谷的洋壳分布、地幔源区不均一性以及扩张演化历史等问题。红海地形中间深、南北两端浅,可以分为北、中北、中南、南等四段。重磁异常的条带主要出现在中南段,其他段不明显,因而限制了以往对红海扩张历史的认识。目前认为红海全段存在洋壳,红海两岸的沿岸悬崖是共轭扩张陆缘,呈向南开口的喇叭型扩张,而非对应红海岸线的梭子型。红海裂谷沿脊的地幔源区具有明显的不均一性,南段玄武岩显示E-MORB特征,表现为阿法尔地幔柱的影响。红海的发育经历了裂谷前火山作用(31~29Ma)、大陆张裂(29~13Ma)和洋底扩张(<13Ma)三个主要阶段。红海裂谷的形成演化与非洲大陆的裂解、阿法尔地幔柱的活动、新特提斯洋的闭合等密切相关,了解红海的地球动力学过程将为揭示区域大地构造演化以及板块运动规律提供依据。  相似文献   
59.
The Kerinitis Delta in the Corinth Rift, Greece, is a footwall derived, coarse‐grained, Gilbert‐type fan delta deposited in the hangingwall of a linked normal fault system. This giant Gilbert‐type delta (radius 3·8 km, thickness > 600 m) was supplied by an antecedent river and built into a brackish to marine basin. Although as yet poorly dated, correlation with neighbouring deltas suggests that the Kerinitis Delta was deposited during a period of 500 to 800 ka in the Early to early Middle Pleistocene. Facies characterizing a range of depositional processes are assigned to four facies associations (topset, foreset, bottomset and prodelta). The dominantly fluvial topset facies association has locally developed shallow marine (limestone) and fluvial‐shoreface sub‐associations. This delta represents a subsidence‐dominated system in which high fault displacement overwhelmed base‐level falls (creation of accommodation predominantly ≥ 0). Stratal geometries and facies stacking patterns were used to identify 11 key stratal surfaces separating 11 stratal units. Each key stratal surface records a landward shift in the topset breakpoint path, indicating a rapid increase in accommodation/sediment supply. Each stratal unit records a gradual decrease in accommodation/sediment supply during deposition. The cyclic stratal units and key stratal surfaces are interpreted as recording eustatic falls and rises, respectively. A 30 m thick package of foresets below the main delta records the nucleation of a small Proto‐delta probably on an early relay ramp. Based on changes in stratal unit geometries, the main delta is divided into three packages, interpreted as recording the initiation, growth and death of the controlling fault system. The Lower delta comprises stacked, relatively thin, progradational stratal units recording low displacement on the young fault system (relay ramp). The Middle delta comprises vertically stacked stratal units, each recording initial aggradation–progradation followed by progradation; their aggradational component increases up through the Middle delta, which records the main phase of increasing rate of fault displacement. The Upper delta records pure progradation, recording abrupt cessation of movement on the fault. A major erosion surface incising basinward 120 m through the Lower and Middle delta records an exceptional submarine erosion process (canyon or delta collapse).  相似文献   
60.
The Midcontinent Rift (MCR) of North America comprises a series of basaltic sheets, flows and intrusive rocks emplaced in the Lake Superior region during the Mesoproterozoic. The mafic rocks preserved on the northern flank of Lake Superior represent the older portions of the rift sequence and offer insights into the early development of the rift. New geochronological, geochemical and paleomagnetic data are presented for the dikes and sills located in and south of Thunder Bay, Ontario. Three sill suites are recognized within the study area; an earlier, spatially restricted ultramafic unit termed the Riverdale sill, the predominant Logan sills and Nipigon sills in the north of the study area. In addition three dike sets are recognized, the north-east trending Pigeon River swarm, the north-west trending Cloud River dikes and the Mt. Mollie dike. The geochemical data demonstrate that the majority of sills south of Thunder Bay are of Logan affinity and distinct from those of broadly similar age in the Nipigon Embayment to the north. The Pigeon River dikes that intrude the sills are geochemically coherent but distinct from the Logan sills and could not be feeders to the sills. The new age of 1109.2 ± 4.2 Ma for the Cloud River dike and its R polarity are consistent with published magnetostratigraphy. The Mt. Mollie dike age (1109.3 ± 6.3 Ma) indicates that it is not coeval with the spatially associated Crystal Lake gabbro as previously thought. The complexity of the dike and sill suites on the northern flank of suggests that the early phases of rifting occurred in distinct and changing stress fields prior to the main extensional rifting preserved in younger rocks to the south. The geochemistry and geochronology of the intrusions suggest a long-lived and complex magmatic history for the Midcontinent Rift.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号