首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1306篇
  免费   119篇
  国内免费   243篇
测绘学   18篇
大气科学   338篇
地球物理   107篇
地质学   257篇
海洋学   36篇
天文学   610篇
综合类   14篇
自然地理   288篇
  2024年   3篇
  2023年   7篇
  2022年   18篇
  2021年   21篇
  2020年   26篇
  2019年   31篇
  2018年   24篇
  2017年   26篇
  2016年   27篇
  2015年   22篇
  2014年   52篇
  2013年   48篇
  2012年   47篇
  2011年   70篇
  2010年   54篇
  2009年   93篇
  2008年   117篇
  2007年   123篇
  2006年   124篇
  2005年   103篇
  2004年   110篇
  2003年   88篇
  2002年   83篇
  2001年   62篇
  2000年   47篇
  1999年   40篇
  1998年   50篇
  1997年   43篇
  1996年   10篇
  1995年   30篇
  1994年   13篇
  1993年   9篇
  1992年   11篇
  1991年   5篇
  1990年   4篇
  1989年   10篇
  1988年   7篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
排序方式: 共有1668条查询结果,搜索用时 31 毫秒
981.
Dust aerosol optical depth (AOD) and its accompanying shortwave radiative forcing (RF) are usually simulated by numerical models. Here, by using 9 months of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol product data in combination with Clouds and the Earth's Radiant Energy System Single Scanner Footprint (CERES/SSF) data, dust AOD and its shortwave RF were estimated over the cloud-free northwest (NW) Pacific Ocean in the springs of 2004, 2005, and 2006. The results showed that in this region, the mean dust AOD and its shortwave RF were 0.10 and -5.51 W m^-2, respectively. In order to validate the dust AOD derived by MODIS, results from the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model were also used here. The correlation coefficient between the monthly averaged dust AOD derived by MODIS measurements and the model simulation results was approximately 0.53. Since the estimates of the dust AOD and its shortwave RF obtained in this study are based mainly on satellite data, they offer a good reference for numerical models.  相似文献   
982.
中国春季沙尘暴年代际变化和季节预测   总被引:2,自引:0,他引:2  
祝从文  徐康  张书萍  郭玲 《气象科技》2010,38(2):201-204
利用1954~2007年中国258个台站观测的月沙尘暴日数资料,北半球地表温度和美国NCAR/NCEP大气再分析资料,研究了中国春季沙尘暴日数年代际变化特征及其影响因子。研究发现:中国春季沙尘暴日数与贝加尔湖地表变暖存在显著的负相关,相关系数达到-0.8,该地区的地表温度变暖导致蒙古气旋活动和我国沙尘暴频率降低。利用该地区冬季对流层850 hPa温度与春季地表温度指数之间显著正相关关系,建立了冬季850 hPa温度指数预测中国春季沙尘暴频率的线性预报方程。通过22年回报检验发现,统计预报结果与多数台站观测的沙尘暴发生频率存在显著的正相关,最大相关系数达到+0.4。其中,近22年的预报场与观测之间空间相关系数平均达到+0.4以上,均方根误差在1~2之间,表明该统计预报模型具有一定的业务应用价值。  相似文献   
983.
The total dust column and the dry deposition flux were calculated based on the optical properties that were measured by a shipboard sun photometer POM-01 MKⅡ in a cloud-free and nonfrontal dust condition on 24 April 2006. The total dust column was calculated by using an integration method of the particle size distribution; the mean value was 1.42±0.30 g m-2. A linear correlation between the total dust column and the aerosol optical depth (AOD) with a linear factor of 2.7 g m-2 over the Sahara was applied to calculate the total dust column in this study; the results were lower than these calculated by the integration method. A reasonable factor of 3.2 g m-2 was achieved by minimizing the standard deviation (SD) of the two methods. The two layers model, which includes the deposition processes of turbulent transfer, Brownian diffusion, impaction and gravitational settling over the sea’s surface, was used to calculate the dry deposition flux; the mean value was 5.05±2.49 μg m-2 s-1. A correlation among the total dust column, dry deposition flux, AOD, and effective radius was discussed. The correlation between the total dust column and the AOD was better than that between the total dust column and the effective radius; however, the correlation between the dry deposition flux and the effective radius was better than that between the dry deposition flux and the AOD.  相似文献   
984.
The aerosol index (AI) of the Total Ozone Mapping Spectrometer (TOMS) satellite data (1979 2001) was analyzed to reveal the climatological long-distance path of dust transport from Asia to North America. The AI in the west coast of the United States is highly correlated with that in the Gobi desert. Additionally, from the TOMS satellite images, it can be seen that very strong plumes advect from Asia to the west coast of North America in typical dust storm cases. When applying the sourcereceptor relationship to detect the northern dust transport path between the Gobi source region and the west coast of the United States receptor region, it is evident that the dust plume can be transported northward beyond 60°N from its source region and that it takes 5 to 6 days to reach the west coast of the United States. The cross correlation technique shown in this work is a useful tool that can be applied in other regions to give useful insights into relationships between major dust sources and downwind receptor locations by using remotely sensed dust observations.  相似文献   
985.
This paper presents samples of Saharan dust outbreak affecting the Mediterranean Tunisian coasts and its impact on PM10 (Particles with an aerodynamic diameter below 10 µm) surface concentrations measured at seven monitoring stations during summer 2006. During the events, the daily PM10 levels at all stations exceeded EU and Tunisian air quality standard limits which are equal to 50 µg/m3. The maximum values ranged from 200 µg/m3 to 300 µg/m3 depending on the monitoring station. The impact is even more dramatic on PM10 hourly concentrations leading to maximum hourly peaks ranging from 400 µg/m3 to 850 µg/m3 again depending on the monitoring station (industrial or residential, traffic and commercial). Comparison between backward air masses trajectories reaching Tunisian coasts and satellite imageries vis-à-vis the PM10 hourly concentrations measured at the monitoring stations during 2006 evidenced the influence of the Saharan dust outbreaks on surface concentrations. The origin of the air masses is found to be from South-West direction under the influence of air masses from the Algerian Saharan desert.  相似文献   
986.
Sporadic meteoroids are the most abundant yet least understood component of the Earth's meteoroid complex. This paper aims to build a physics-based model of this complex calibrated with five years of radar observations. The model of the sporadic meteoroid complex presented here includes the effects of the Sun and all eight planets, radiation forces and collisions. The model uses the observed meteor patrol radar strengths of the sporadic meteors to solve for the dust production rates of the populations of comets modeled, as well as the mass index. The model can explain some of the differences between the meteor velocity distributions seen by transverse versus radial scatter radars. The different ionization limits of the two techniques result in their looking at different populations with different velocity distributions. Radial scatter radars see primarily meteors from 55P/Tempel-Tuttle (or an orbitally similar lost comet), while transverse scatter radars are dominated by larger meteoroids from the Jupiter-family comets. In fact, our results suggest that the sporadic complex is better understood as originating from a small number of comets which transfer material to near-Earth space quite efficiently, rather than as a product of the cometary population as a whole. The model also sheds light on variations in the mass index reported by different radars, revealing it to be a result of their sampling different portions of the meteoroid population. In addition, we find that a mass index of s=2.34 as observed at Earth requires a shallower index (s=2.2) at the time of meteoroid production because of size-dependent processes in the evolution of meteoroids. The model also reveals the origin of the 55° radius ring seen centered on the Earth's apex (a result of high-inclination meteoroids undergoing Kozai oscillation) and the central condensations seen in the apex sources, as well as providing insight into the strength asymmetry of the helion and anti-helion sources.  相似文献   
987.
The Gegenschein is viewed by the Solar Mass Ejection Imager (SMEI), which has provided near-full-sky broadband visible-light photometric maps for over 5 years. These have an angular resolution of about 0.5° and differential photometric stability of about 1% throughout this time. When individual bright stars are removed from the maps and an empirical sidereal background subtracted, the residue is dominated by the zodiacal light. The unprecedented sky coverage and duration of these measurements enables a definitive characterization of the Gegenschein. This article describes the analysis method for these data, presents a movie with time of the Gegenschein brightness distribution, determines empirical formulae describing its average shape, and discusses its variation with time. These measurements unambiguously confirm previous reports that the Gegenschein surface-brightness distribution has a decided peak in the antisolar point, which rises above a broader background.  相似文献   
988.
The relative proportions of asteroidal and cometary materials in the zodiacal cloud is an ongoing debate. The determination of the asteroidal component is constrained through the study of the Solar System dust bands (the fine-structure component superimposed on the broad background cloud), since they have been confidently linked to specific, young, asteroid families in the main belt. The disruptions that produce these families also result in the injection of dust into the cloud and thus hold the key to determining at least a minimum value for the asteroidal contribution to the zodiacal cloud. There are currently known to be at least three dust band pairs, one at approximately 9.35° associated with the Veritas family and two central band pairs near the ecliptic, one of which is associated with the Karin subcluster of the Koronis family. Through careful co-adding of almost all the pole-to-pole intensity scans in the mid-infrared wavebands of the Infrared Astronomical Satellite (IRAS) data set, we find strong evidence for a partial Solar System dust band, that is, a very young dust band in the process of formation, at approximately 17° latitude. We think this is a confirmation of the M/N partial band pair first suggested by Sykes [1988. IRAS observations of extended zodiacal structures. Astrophys. J. 334, L55-L58]. The new dust band appears at some but not all ecliptic longitudes, as expected for a young, partially formed dust band. We present preliminary modeling of the new, partial dust band which allows us to put constraints on the age of the disruption event, the inclination and node of the parent body at the time of disruption, and the quantity of dust injected into the zodiacal cloud.  相似文献   
989.
We investigate shattering and coagulation of dust grains in turbulent interstellar medium (ISM). The typical velocity of dust grain as a function of grain size has been calculated for various ISM phases based on a theory of grain dynamics in compressible magnetohydrodynamic turbulence. In this paper, we develop a scheme of grain shattering and coagulation and apply it to turbulent ISM by using the grain velocities predicted by the above turbulence theory. Since large grains tend to acquire large velocity dispersions as shown by earlier studies, large grains tend to be shattered. Large shattering effects are indeed seen in warm ionized medium within a few Myr for grains with radius   a ≳ 10−6  cm. We also show that shattering in warm neutral medium can limit the largest grain size in ISM  ( a ∼ 2 × 10−5 cm)  . On the other hand, coagulation tends to modify small grains since it only occurs when the grain velocity is small enough. Coagulation significantly modifies the grain size distribution in dense clouds (DC), where a large fraction of the grains with   a < 10−6 cm  coagulate in 10 Myr. In fact, the correlation among   RV   , the carbon bump strength and the ultraviolet slope in the observed Milky Way extinction curves can be explained by the coagulation in DC. It is possible that the grain size distribution in the Milky Way is determined by a combination of all the above effects of shattering and coagulation. Considering that shattering and coagulation in turbulence are effective if dust-to-gas ratio is typically more than ∼1/10 of the Galactic value, the regulation mechanism of grain size distribution should be different between metal-poor and metal-rich environments.  相似文献   
990.
We present a comprehensive treatment of the spectrum of electric dipole emission from spinning dust grains, updating the commonly used model of Draine & Lazarian. Grain angular velocity distributions are computed using the Fokker–Planck equation; we revisit the drift and diffusion coefficients for the major torques on the grain, including collisions, grain-plasma interactions and infrared emission. We use updated grain optical properties and size distributions. The theoretical formalism is implemented in the companion code, spdust , which is publicly available. The effect of some environmental and grain parameters on the emissivity is shown and analysed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号