首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   839篇
  免费   87篇
  国内免费   84篇
测绘学   8篇
大气科学   60篇
地球物理   92篇
地质学   237篇
海洋学   3篇
天文学   2篇
综合类   14篇
自然地理   594篇
  2024年   4篇
  2023年   5篇
  2022年   27篇
  2021年   34篇
  2020年   25篇
  2019年   33篇
  2018年   20篇
  2017年   29篇
  2016年   31篇
  2015年   30篇
  2014年   43篇
  2013年   49篇
  2012年   40篇
  2011年   54篇
  2010年   55篇
  2009年   46篇
  2008年   36篇
  2007年   49篇
  2006年   48篇
  2005年   55篇
  2004年   44篇
  2003年   45篇
  2002年   54篇
  2001年   34篇
  2000年   21篇
  1999年   25篇
  1998年   16篇
  1997年   22篇
  1996年   10篇
  1995年   8篇
  1994年   7篇
  1993年   7篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有1010条查询结果,搜索用时 15 毫秒
21.
Timing and amount of solar radiation were examined as factors influencing the distribution of seven perennial plants on a small mountain located in the Chihuahuan Desert. Average direct beam solar radiation fluxes at differing times throughout the day and year were estimated with computer calculations. Principal components analysis was used to reduce the number of solar radiation parameters and include the maximum available information with a manageable number of variables. The remaining solar radiation parameters were compared to plant distributions using redundancy analysis and generalized additive models. Unimodal, bimodal, and monotonic responses were all found depending upon the species and solar radiation parameter. Niche separation at this location depends upon the timing as well as the amount of solar radiation.  相似文献   
22.
The biological phenomenon commonly referred to as maternal effect occurs whenever the environment exerts an influence upon the mother that is later expressed in characteristics of her offsprings. For example, the environmental conditions experienced by a mother plant during flowering and fruiting can modify the quality of her descendants (seeds), and even interrupt their development. Between-year variation in minimum temperature and the classic, between-year variation in precipitation represent an unpredictable environment for winter blooming plants in arid zones. In this study, we investigated the effect of maternal environment (temperature and precipitation) on seed size and seed quality in F. cernua, over a 5-year period. Results indicated that the proportion of filled seeds, as well as their size, increased with higher absolute minimum temperatures during seed formation, and that, to a lesser extent, both the precipitation occurred during the same period and the annual precipitation also have a positive influence on seed size. In this way, environmental conditions prevailing during seed formation exerted a strong maternal effect on the size and quality of seeds produced and, probably also, in the developmental possibilities of F. cernua seedlings. This effect was subject to important, between-year variation.  相似文献   
23.
古尔班通古特沙漠生物结皮的分布特征   总被引:47,自引:1,他引:47  
新疆古尔班通古特沙漠是我国最大的固定和半固定沙漠,其间广泛发育着以地衣植物为主的生物结皮,是除种子植物以外的固定沙面的重要生物因子。研究表明,选择适当的时段,应用遥感技术并结合地面调查来研究沙漠生物结皮的空间分布格局是可行的,遥感制图与地面调查的结果基本一致。该沙漠南部是生物结皮最为丰富的区域,各种类型的生物结皮均有充分发育,呈连续分布,但其分布模式向北、向西和向东变得破碎。通过统计生物结皮像元的面积,得到生物结皮覆盖率超过33%的像元面积占研究区总面积的28.7%。生物结皮的分布对地貌部位有较强的选择性,生物结皮的不同发育阶段种类组成亦有较大的差别。  相似文献   
24.
Enclosure is one of the most widely used management tools for degraded alpine grassland on the northern Tibetan Plateau, but the responses of different types of grassland to enclosure may vary, and research on these responses can provide a scientific basis for improving ecological conservation. This study took one site for each of three grassland types (alpine meadow, alpine steppe and alpine desert) on the northern Tibetan Plateau as examples, and explored the effects of enclosure on plant and soil nutrients by comparing differences in plant community biomass, leaf-soil nutrient content and their stoichiometry between samples from inside and outside the fence. The results showed that enclosure can significantly increase all aboveground biomass in these three grassland types, but it only increased the 10-20 cm underground biomass in the alpine desert. Enclosure also significantly increased the leaf nutrient content of the dominant plants and contents of total nitrogen (N), total potassium (K), and organic carbon (C) in 10-20 cm soil in alpine desert, thus changing the stoichiometry between C, N and P (phosphorus). However, enclosure significantly increased only the N content of dominant plant leaves in alpine steppe, while other nutrients and stoichiometries of both plant leaves and soil did not show significant differences in alpine meadow and alpine steppe. These results suggested that enclosure has differential effects on these three types of alpine grasslands on the northern Tibetan Plateau, and the alpine desert showed the most active ecological conservation in the responses of its soil and plant nutrients.  相似文献   
25.
The study of water fluxes is important to better understand hydrological cycles in arid regions. Data-driven machine learning models have been recently applied to water flux simulation. Previous studies have built site-scale simulation models of water fluxes for individual sites separately, requiring a large amount of data from each site and significant computation time. For arid areas, there is no consensus as to the optimal model and variable selection method to simulate water fluxes. Using data from seven flux observation sites in the arid region of Northwest China, this study compared the performance of random forest (RF), support vector machine (SVM), back propagation neural network (BPNN), and multiple linear regression (MLR) models in simulating water fluxes. Additionally, the study investigated inter-annual and seasonal variation in water fluxes and the dominant drivers of this variation at different sites. A universal simulation model for water flux was built using the RF approach and key variables as determined by MLR, incorporating data from all sites. Model performance of the SVM algorithm (R2 = 0.25–0.90) was slightly worse than that of the RF algorithm (R2 = 0.41–0.91); the BPNN algorithm performed poorly in most cases (R2 = 0.15–0.88). Similarly, the MLR results were limited and unreliable (R2 = 0.00–0.66). Using the universal RF model, annual water fluxes were found to be much higher than the precipitation received at each site, and natural oases showed higher fluxes than desert ecosystems. Water fluxes were highest during the growing season (May–September) and lowest during the non-growing season (October–April). Furthermore, the dominant drivers of water flux variation were various among different sites, but the normalized difference vegetation index (NDVI), soil moisture and soil temperature were important at most sites. This study provides useful insights for simulating water fluxes in desert and oasis ecosystems, understanding patterns of variation and the underlying mechanisms. Besides, these results can make a contribution as the decision-making basis to the water management in desert and oasis ecosystems.  相似文献   
26.
Serpentinites in the Eastern Desert of Egypt are the most distinctive lithological unit in the Arabian–Nubian Shield (ANS) ophiolite sequence which associated with major suture zones. Khor Um-Safi (KUS) serpentinites represent dismembered fragments of ophiolitic rocks located in the central Eastern Desert (CED) of Egypt.KUS serpentinites exhibit affinity to the typical metamorphic peridotites with harzburgitic protolith compositions. Their opaque mineral assemblage (pentlandite, heazlewoodite and magnetite) is similar to that observed in oceanic serpentinites and implies serpentinization under highly reducing conditions. They have refractory major element compositions with Al2O3 contents comparable to oceanic and active margin peridotites as well as Pan-African serpentinites. The Cr and TiO2 contents reflect evolution within a supra-subduction zone (SSZ) environment. This implication is confirmed by the Al2O3/SiO2 and MgO/SiO2 ratios which akin to ANS ophiolitic peridotites in fore-arc setting. Their enrichment in compatible trace elements (Cr, Ni and Co) reveals a depleted mantle peridotite protolith.Modelling trace elements indicates that they represent the mantle residues from 15 to 20 % melting of spinel peridotite at oxygen fugacity conditions of the QFM + 1 buffer. This range of melt extraction is consistent with the typical range of SSZ peridotite. Oxygen fugacity estimation suggests evolution under more oxidizing regime similar to modern fore-arc basin system. Moreover, this implication indicates that the KUS mantle represents arc lithosphere interacted with arc melt.  相似文献   
27.
生物土壤结皮固沙理论与实践   总被引:3,自引:2,他引:1  
生物土壤结皮是由土壤微生物、藻类、地衣和苔藓等孢子植物类群与土壤颗粒形成的有机复合体,在全球干旱区地表广泛分布,是干旱地表生物覆被层的主要构建者.生物土壤结皮是荒漠植物群落演替的先锋类群,能够提高荒漠地表的稳定性,固定碳和氮等营养元素,增加土壤肥力,并在保持土壤水分方面发挥重要作用,因此在干旱区受损地表的生态修复方面具...  相似文献   
28.
以达拉特旗西南部的高头窑镇为研究区域,以达拉特旗1987、1995、2000和2003年四期遥感影像为信息源,在3S技术支持下,对遥感影像进行解译,获得1987-2003年来四个时期的沙漠化动态变化数据,分析了高头窑镇20世纪80年代中期到21世纪初的沙漠化变化情况。结果表明:该地区近20年来,沙漠化土地处于发展-发展-逆转的过程中。研究区是典型的荒漠草原区,草原在各土地利用类型中始终占有绝对优势,农田、林地和高盖度草原的面积变化较大,各种土地利用类型之间的转化主要表现为各种沙丘类型之间的转化、各种草原类型之间的转化和草原与固定沙丘之间的转化。1987-2000年期间,草原和林地的退化是导致沙漠化严重发展的主要原因。2000-2003年间,土地类型之间的转化表现为固定沙丘、半固定沙丘和林地向草原的转化,这种转化有利于沙漠化的逆转。可见,在高头窑地区,草原的退化是导致沙漠化的主要原因,因此,在沙漠化的治理方面,应该合理利用草原,防止过度放牧,大力倡导退林还草。  相似文献   
29.
The formal opportunity to learn geography in the United States is unevenly distributed across space, creating possible geography deserts. Data on the number of exams taken in Advanced Placement Human Geography (APHG) and bachelor’s degrees earned in geography are mapped at the state and regional scales. Normalized rates are ranked and grouped into quintiles. For APHG exams, states in the southeastern region of the United States are in the uppermost quintiles while states in the northeastern region are in the lowermost quintiles. The pattern for bachelor’s degrees in geography is somewhat the spatial inverse of that for APHG.  相似文献   
30.
Groundwater is a key factor controlling the growth of vegetation in desert riparian systems. It is important to recognise how groundwater changes affect the riparian forest ecosystem. This information will not only help us to understand the ecological and hydrological process of the riparian forest but also provide support for ecological recovery of riparian forests and water-resources management of arid inland river basins. This study aims to estimate the suitability of the Water Vegetation Energy and Solute Modelling(WAVES) model to simulate the Ejina Desert riparian forest ecosystem changes,China, to assess effects of groundwater-depth change on the canopy leaf area index(LAI) and water budgets, and to ascertain the suitable groundwater depth for preserving the stability and structure of desert riparian forest. Results demonstrated that the WAVES model can simulate changes to ecological and hydrological processes. The annual mean water consumption of a Tamarix chinensis riparian forest was less than that of a Populus euphratica riparian forest, and the canopy LAI of the desert riparian forest should increase as groundwater depth decreases. Groundwater changes could significantly influence water budgets for T. chinensis and P. euphratica riparian forests and show the positive and negative effects on vegetation growth and water budgets of riparian forests. Maintaining the annual mean groundwater depth at around 1.7-2.7 m is critical for healthy riparian forest growth. This study highlights the importance of considering groundwater-change impacts on desert riparian vegetation and water-balance applications in ecological restoration and efficient water-resource management in the Heihe River Basin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号