首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2142篇
  免费   524篇
  国内免费   444篇
测绘学   211篇
大气科学   396篇
地球物理   815篇
地质学   683篇
海洋学   519篇
天文学   125篇
综合类   171篇
自然地理   190篇
  2024年   4篇
  2023年   20篇
  2022年   35篇
  2021年   48篇
  2020年   58篇
  2019年   80篇
  2018年   53篇
  2017年   77篇
  2016年   82篇
  2015年   83篇
  2014年   102篇
  2013年   148篇
  2012年   124篇
  2011年   135篇
  2010年   133篇
  2009年   139篇
  2008年   136篇
  2007年   204篇
  2006年   167篇
  2005年   132篇
  2004年   126篇
  2003年   105篇
  2002年   106篇
  2001年   88篇
  2000年   73篇
  1999年   95篇
  1998年   79篇
  1997年   73篇
  1996年   73篇
  1995年   55篇
  1994年   63篇
  1993年   45篇
  1992年   45篇
  1991年   37篇
  1990年   18篇
  1989年   26篇
  1988年   9篇
  1987年   13篇
  1986年   5篇
  1985年   2篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1954年   1篇
排序方式: 共有3110条查询结果,搜索用时 328 毫秒
51.
波流共存场中多向随机波浪传播变形数学模型   总被引:1,自引:0,他引:1       下载免费PDF全文
基于波作用量守恒方程建立了波流共存场中多向随机波浪传播变形数学模型,模型中考虑了波浪绕射的影响和水流引起的波浪弥散多普勒效应,应用包含水流和地形影响的激破波模式计算波浪破碎的能量耗散,采用一阶上迎风有限差分格式离散控制方程。分别计算了有无近岸流情况下单向和多向随机波浪的波高分布,考虑水流影响的数值计算结果与物理模型实验数据吻合良好,比较分析表明,所建立的数学模型能够复演由于离岸流引起的波高增大,可用于波流共存场多向随机波浪传播变形的模拟和预报。  相似文献   
52.
针对如何减小数值求解对流输运方程耗散误差的问题,引进断面计算浓度的概念来计算河段平均浓度,提出了非充分掺混模式的有限控制体积法离散对流输运方程的新算法,据此构建了模拟流域内的水源组成以及不同水源在流域内的时空变化情况的流域来水组成模型。通过数值试验与具体实例验证,结果表明所提出的非充分掺混模式的新算法可有效地提高流域来水模型的计算精度。  相似文献   
53.
We deal here with the efficient starting points for Kepler's equation in the special case of nearly parabolic orbits. Our approach provides with very simple formulas that allow calculating these points on a scientific vest-pocket calculator. Moreover, srtarting with these points in the Newton's method we can calculate a root of Kepler's equation with an accuracy greater than 0.001 in 0–2 iterations. This accuracy holds for the true anomaly || 135° and |e – 1| 0.01. We explain the reason for this effect also.Dedicated to the memory of Professor G.N. Duboshin (1903–1986).  相似文献   
54.
The classic Lagrange's expansion of the solutionE(e, M) of Kepler's equation in powers of eccentricity is extended to highly eccentric orbits, 0.6627 ... <e<1. The solutionE(e, M) is developed in powers of (e–e*), wheree* is a fixed value of the eccentricity. The coefficients of the expansion are given in terms of the derivatives of the Bessel functionsJ n (ne). The expansion is convergent for values of the eccentricity such that |e–e*|<(e*), where the radius of convergence (e*) is a positive real number, which is calculated numerically.  相似文献   
55.
We consider the Hill's equation: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca% WGKbWaaWbaaSqabeaacaaIYaaaaOGaeqOVdGhabaGaamizaiaadsha% daahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaWGTbGaai% ikaiaad2gacqGHRaWkcaaIXaGaaiykaaqaaiaaikdaaaGaam4qamaa% CaaaleqabaGaaGOmaaaakiaacIcacaWG0bGaaiykaiabe67a4jabg2% da9iaaicdaaaa!4973!\[\frac{{d^2 \xi }}{{dt^2 }} + \frac{{m(m + 1)}}{2}C^2 (t)\xi = 0\]Where C(t) = Cn (t, {frbuilt|1/2}) is the elliptic function of Jacobi and m a given real number. It is a particular case of theame equation. By the change of variable from t to defined by: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaOWaaiqaaq% aabeqaamaalaaajaaybaGaamizaGGaaiab-z6agbqaaiaadsgacaWG% 0baaaiabg2da9OWaaOaaaKaaGfaacaGGOaqcKbaG-laaigdajaaycq% GHsislkmaaleaajeaybaGaaGymaaqaaiaaikdaaaqcaaMaaeiiaiaa% bohacaqGPbGaaeOBaOWaaWbaaKqaGfqabaGaaeOmaaaajaaycqWFMo% GrcqWFPaqkaKqaGfqaaaqcaawaaiab-z6agjab-HcaOiab-bdaWiab% -LcaPiab-1da9iab-bdaWaaakiaawUhaaaaa!51F5!\[\left\{ \begin{array}{l}\frac{{d\Phi }}{{dt}} = \sqrt {(1 - {\textstyle{1 \over 2}}{\rm{ sin}}^{\rm{2}} \Phi )} \\\Phi (0) = 0 \\\end{array} \right.\]it is transformed to the Ince equation: (1 + · cos(2)) y + b · sin(2) · y + (c + d · cos(2)) y = 0 where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaiaadggacq% GH9aqpcqGHsislcaWGIbGaeyypa0JcdaWcgaqaaiaaigdaaeaacaaI% ZaGaaiilaiaabccacaWGJbGaeyypa0Jaamizaiabg2da9aaacaqGGa% WaaSaaaKaaGfaacaWGTbGaaiikaiaad2gacqGHRaWkcaaIXaGaaiyk% aaqaaiaaiodaaaaaaa!4777!\[a = - b = {1 \mathord{\left/{\vphantom {1 {3,{\rm{ }}c = d = }}} \right.\kern-\nulldelimiterspace} {3,{\rm{ }}c = d = }}{\rm{ }}\frac{{m(m + 1)}}{3}\]In the neighbourhood of the poles, we give the expression of the solutions.The periodic solutions of the Equation (1) correspond to the periodic solutions of the Equation (3). Magnus and Winkler give us a theory of their existence. By comparing these results to those of our study in the case of the Hill's equation, we can find the development in Fourier series of periodic solutions in function of the variable and deduce the development of solutions of (1) in function of C(t).  相似文献   
56.
Hydrocyclones are widely used in the mining and chemical industries. An attempt has been made in this study, to develop a CFD (computational fluid dynamics) model, which is capable of predicting the flow patterns inside the hydrocyclone, including accurate prediction of flow split as well as the size of the air-core. The flow velocities and air-core diameters are predicted by DRSM (differential Reynolds stress model) and LES (large eddy simulations) models were compared to experimental results. The predicted water splits and air-core diameter with LES and RSM turbulence models along with VOF (volume of fluid) model for the air phase, through the outlets for various inlet pressures were also analyzed. The LES turbulence model led to an improved turbulence field prediction and thereby to more accurate prediction of pressure and velocity fields. This improvement was distinctive for the axial profile of pressure, indicating that air-core development is principally a transport effect rather than a pressure effect.  相似文献   
57.
Ice and snow have often helped physicists understand the world. On the contrary it has taken them a very long time to understand the flow of the glaciers. Naturalists only began to take an interest in glaciers at the beginning of the 19th century during the last phase of glacier advances. When the glacier flow from the upslope direction became obvious, it was then necessary to understand how it flowed. It was only in 1840, the year of the Antarctica ice sheet discovery by Dumont d'Urville, that two books laid the basis for the future field of glaciology: one by Agassiz on the ice age and glaciers, the other one by canon Rendu on glacier theory. During the 19th century, ice flow theories, adopted by most of the leading scientists, were based on melting/refreezing processes. Even though the word ‘fluid’ was first used in 1773 to describe ice, more the 130 years would have to go by before the laws of fluid mechanics were applied to ice. Even now, the parameter of Glen's law, which is used by glaciologists to model ice deformation, can take a very wide range of values, so that no unique ice flow law has yet been defined. To cite this article: F. Rémy, L. Testut, C. R. Geoscience 338 (2006).  相似文献   
58.
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号