首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   3篇
大气科学   3篇
地球物理   10篇
地质学   38篇
海洋学   1篇
天文学   6篇
综合类   3篇
自然地理   2篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   6篇
  2017年   10篇
  2016年   7篇
  2015年   3篇
  2014年   6篇
  2013年   6篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
  1997年   1篇
  1992年   1篇
  1991年   2篇
  1975年   1篇
排序方式: 共有63条查询结果,搜索用时 31 毫秒
1.
The Ramgarh structure is a morphological landmark in southeastern Rajasthan, India. Its 200 m high and 3.5–4 km wide annular collar has provoked many hypotheses regarding its origin, including impact. Here, we document planar deformation features, planar fractures, and feather features in quartz grains of the central part of the Ramgarh structure, which confirm its impact origin. The annular collar does not mark the crater rim but represents the outer part of a central uplift of an approximately 10 km diameter complex impact structure. The apparent crater rim is exposed as a low‐angle normal fault and can be traced as lineaments in remote sensing imagery. The central uplift shows a stratigraphic uplift of ~1000 m and is rectangular in shape. It is dissected by numerous faults that are co‐genetic with the formation of the central uplift. The central uplift has a bilateral symmetry along an SW‐NE axis, where a large strike‐slip fault documents a strong horizontal shear component. This direction corresponds to the assumed impact trajectory from the SW toward the NE. The uprange sector is characterized by concentric reverse faults, whereas radial faults dominate downrange. Sandstones of the central uplift are infiltrated by Fe‐oxides and suggest an impact‐induced hydrothermal mineralization overprint. The impact may have occurred into a shallow water environment as indicated by soft‐sediment deformation features, observed near the apparent crater rim, and the deposition of a diamictite layer above them. Gastropods embedded in the diamictite have Middle Jurassic age and may indicate the time of the impact.  相似文献   
2.
3.
Dynamic Subsidence Characteristics in Jharia Coalfield,India   总被引:1,自引:0,他引:1  
Surface ground movements are usually described by a number of characteristic indices such as vertical displacement, horizontal strain and slope, which are an inevitable consequence of underground mining. Every point at the surface over a panel is subjected to strain and slope during mining and its investigation is essential to assess the safety of surface structures. Therefore, the behaviour of dynamic active and residual subsidence was studied for a few panels of Jharia coalfield. The subsidence and slope were linearly related to time. Compressive and tensile strains showed typical fluctuating characteristic behaviour. The rate of mining being a key and controlling parameter for rate of subsidence their inter-relationship was developed, which showed a rational trend. Compressive and tensile strains and slope showed poor correlation with rate of face advance.  相似文献   
4.
5.
6.
The In Ouzzal terrane (Western Hoggar) is an example of Archaean crust remobilized during a very-high-temperature metamorphism related to the Paleoproterozoic orogeny (2 Ga). Pan-African events (≈0.6 Ga) are localized and generally of low intensity. The In Ouzzal terrane is composed of two Archaean units, a lower crustal unit made up essentially of enderbites and charnockites, and a supracrustal unit of quartzites, banded iron formations, marbles, Al–Mg and Al–Fe granulites commonly associated with mafic (metanorites and garnet pyroxenites) and ultramafic (pyroxenites, lherzolites and harzburgites) lenses. Cordierite-bearing monzogranitic gneisses and anorthosites occur also in this unit. The continental crust represented by the granulitic unit of In Ouzzal was formed during various orogenic reworking events spread between 3200 and 2000 Ma. The formation of a continental crust made up of tonalites and trondhjemites took place between 3200 and 2700 Ma. Towards 2650 Ma, extension-related alkali-granites were emplaced. The deposition of the metasedimentary protoliths between 2700 and 2650 Ma, was coeval with rifting. The metasedimentary rocks such as quartzites and Al–Mg pelites anomalously rich in Cr and Ni, are interpreted as a mixture between an immature component resulting from the erosion and hydrothermal alteration of mafic to ultramafic materials, and a granitic mature component. The youngest Archaean igneous event at 2500 Ma includes calc-alkaline granites resulting from partial melting of a predominantly tonalitic continental crust. These granites were subsequently converted into charnockitic orthogneisses. This indicates crustal thickening or heating, and probably late Archaean high-grade metamorphism coeval with the development of domes and basins. The Paleoproterozoic deformation consists essentially of a re-activation of the pre-existing Archaean structures. The structural features observed at the base of the crust argue in favour of deformation under granulite-facies. These features are compatible with homogeneous horizontal shortening of overall NW–SE trend that accentuated the vertical stretching and flattening of old structures in the form of basins and domes. This shortening was accommodated by horizontal displacements along transpressive shear corridors. Reactional textures and the development of parageneses during the Paleoproterozoic suggest a clockwise P–T path characterized by prograde evolution at high pressures (800–1050 °C at 10–11 kbar), leading to the appearance of exceptional parageneses with corundum–quartz, sapphirine–quartz and sapphirine–spinel–quartz. This was followed by an isothermal decompression (9–5 kbar). Despite the high temperatures attained, the dehydrated continental crust did not undergo any significant partial melting. The P–T path followed by the granulites is compatible with a continental collision, followed by delamination of the lithosphere and uprise of the asthenosphere. During exhumation of this chain, the shear zones controlled the emplacement of carbonatites associated with fenites.  相似文献   
7.
We consider the Hill's equation: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSaaaeaaca% WGKbWaaWbaaSqabeaacaaIYaaaaOGaeqOVdGhabaGaamizaiaadsha% daahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaWGTbGaai% ikaiaad2gacqGHRaWkcaaIXaGaaiykaaqaaiaaikdaaaGaam4qamaa% CaaaleqabaGaaGOmaaaakiaacIcacaWG0bGaaiykaiabe67a4jabg2% da9iaaicdaaaa!4973!\[\frac{{d^2 \xi }}{{dt^2 }} + \frac{{m(m + 1)}}{2}C^2 (t)\xi = 0\]Where C(t) = Cn (t, {frbuilt|1/2}) is the elliptic function of Jacobi and m a given real number. It is a particular case of theame equation. By the change of variable from t to defined by: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaOWaaiqaaq% aabeqaamaalaaajaaybaGaamizaGGaaiab-z6agbqaaiaadsgacaWG% 0baaaiabg2da9OWaaOaaaKaaGfaacaGGOaqcKbaG-laaigdajaaycq% GHsislkmaaleaajeaybaGaaGymaaqaaiaaikdaaaqcaaMaaeiiaiaa% bohacaqGPbGaaeOBaOWaaWbaaKqaGfqabaGaaeOmaaaajaaycqWFMo% GrcqWFPaqkaKqaGfqaaaqcaawaaiab-z6agjab-HcaOiab-bdaWiab% -LcaPiab-1da9iab-bdaWaaakiaawUhaaaaa!51F5!\[\left\{ \begin{array}{l}\frac{{d\Phi }}{{dt}} = \sqrt {(1 - {\textstyle{1 \over 2}}{\rm{ sin}}^{\rm{2}} \Phi )} \\\Phi (0) = 0 \\\end{array} \right.\]it is transformed to the Ince equation: (1 + · cos(2)) y + b · sin(2) · y + (c + d · cos(2)) y = 0 where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaqcaawaaiaadggacq% GH9aqpcqGHsislcaWGIbGaeyypa0JcdaWcgaqaaiaaigdaaeaacaaI% ZaGaaiilaiaabccacaWGJbGaeyypa0Jaamizaiabg2da9aaacaqGGa% WaaSaaaKaaGfaacaWGTbGaaiikaiaad2gacqGHRaWkcaaIXaGaaiyk% aaqaaiaaiodaaaaaaa!4777!\[a = - b = {1 \mathord{\left/{\vphantom {1 {3,{\rm{ }}c = d = }}} \right.\kern-\nulldelimiterspace} {3,{\rm{ }}c = d = }}{\rm{ }}\frac{{m(m + 1)}}{3}\]In the neighbourhood of the poles, we give the expression of the solutions.The periodic solutions of the Equation (1) correspond to the periodic solutions of the Equation (3). Magnus and Winkler give us a theory of their existence. By comparing these results to those of our study in the case of the Hill's equation, we can find the development in Fourier series of periodic solutions in function of the variable and deduce the development of solutions of (1) in function of C(t).  相似文献   
8.
The Abu Ruweis Formation is composed of carbonates, evaporites, and mudstones, with some locally developed pelletic, oolitic and stromatolitic limestones. The lateral persistence of bedding, the purity of the evaporite rocks, the alternating arrangement of marine carbonates and evaporites indicates periodic deposition in subaqueous conditions (salina). Petrographic investigations, X-ray diffraction analysis as well as chemical analysis have shown that the outcropping evaporite beds are mainly composed of secondary gypsum, with rare anhydrite relics. Five microfacies of gypsum were recognized according to their fabrics: porphyroblastic and granoblastic gypsum showing polarization texture, gypsum pseudomorph after anhydrite laths, and satin spar gypsum. The textures they display indicate a hydration origin of precursor anhydrite, which is in turn rehydrated from primary gypsum. Some of these anhydrites were formed as a result of replacement processes of the carbonate sediments associated with the evaporites, as evidenced from the textural relationships of the carbonate and sulfate minerals. The O18 content ranges from 1.45 to 8.38% PDB and the C13 content ranges from −1.52 to 4.73% PDB. Trace elements analysis has shown that the Abu Ruweis dolomites are rich in strontium (up to 600 ppm), and sodium (up to 835 ppm). The isotope composition and trace elements content, as well as the petrographic characteristics point to a penecontemporaneous hypersaline dolomitization origin for the Abu Ruweis dolomites. The evaporites were deposited during a regressive lowstand systems tract, whereas the carbonates were deposited under shallow water marine conditions during a highstand systems tract. The Abu Ruweis succession represents a relatively stable arid climate within a rapidly subsiding basin. Restricted conditions were provided by the development of beach barriers.  相似文献   
9.
Nowadays,the preservation of natural resources,the reuse,and the recycling of waste and by-products in the cement industry are gaining increasing attention in a sustainable development project.In this perspective,many studies focus on finding solutions in order to propose environmentally friendly materials.Nowadays the sediments represent a way to preserve the natural resources by their reuse as a secondary raw material in multiple applications(concrete,roads,landscaped mound,etc.).However,they commonly contain contaminants,organic matter(5%-30%),high water content(50%-200%),and relatively small particle size(Dmax≤300 mm).Therefore to improve the mechanical properties of this material as well as its physiochemical ones,specific methods of characterization and appropriate treatment techniques(calcination,chemical treatment,etc.)are required.This article presents a bibliographical review of the efficient use of sediments in cementitious matrix.It details experimental tests that must be performed to ensure the durability of sediment-based structure and assess their environmental impact under prescribed conditions.  相似文献   
10.
Belt and Road Initiative (BRI) is a Chinese national strategy which calls for cooperative economic, political and cultural exchange at the global level along the ancient Silk Road. The overwhelming natural hazards located along the belt and road bring great challenges to the success of BRI. In this framework, a 5-year international program was launched to address issues related to hazards assessment and disaster risk reduction (DRR). The first workshop of this program was held in Beijing with international experts from over 15 countries. Risk conditions on Belt and Road Countries (BRCs) have been shared and science and technology advancements on DRR have been disseminated during the workshop. Under this program, six task forces have been setup to carry out collaborative research works and three prioritized study areas have been established. This workshop announced the launching of this program which involved partners from different countries including Pakistan, Nepal, Russia, Italy, United Kingdom, Sri Lanka and Tajikistan. The program adopted the objectives of Sendai Framework for Disaster Risk Reduction 2015–2030 and United Nation Sustainable Development Goals 2030 and was implemented to assess disaster risk in BRCs and to propose suitable measures for disaster control which can be appropriate both for an individual country and for specific sites. This paper deals with the outcomes of the workshop and points out opportunities for the near future international cooperation on this matter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号