首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   845篇
  免费   187篇
  国内免费   39篇
测绘学   215篇
大气科学   10篇
地球物理   558篇
地质学   132篇
海洋学   27篇
天文学   24篇
综合类   62篇
自然地理   43篇
  2023年   6篇
  2022年   20篇
  2021年   36篇
  2020年   36篇
  2019年   45篇
  2018年   33篇
  2017年   37篇
  2016年   26篇
  2015年   32篇
  2014年   43篇
  2013年   54篇
  2012年   67篇
  2011年   55篇
  2010年   50篇
  2009年   53篇
  2008年   64篇
  2007年   72篇
  2006年   54篇
  2005年   69篇
  2004年   44篇
  2003年   43篇
  2002年   40篇
  2001年   21篇
  2000年   18篇
  1999年   8篇
  1998年   8篇
  1997年   8篇
  1996年   8篇
  1995年   8篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1985年   1篇
  1981年   1篇
  1954年   1篇
排序方式: 共有1071条查询结果,搜索用时 15 毫秒
101.
Eccentrically braced frames (EBFs) can be repaired after a major earthquake by replacing the links. The link replacement is not a straightforward process and is influenced by the type of the link and the amount of residual frame deformations. The past decade has witnessed the development of different types of replaceable links such as end-plated links, web connected links, bolted flange and web spliced links, and collector beam and brace spliced links. All of the developed replaceable link details, except the web connected links, are not suitable for link replacement under residual frame drift. In this paper, a detachable replaceable link detail which is based on splicing the link at its mid-length is proposed. The detail is well suited for installation under residual frame drifts. In addition, the weight and size of the members to be transported and erected are reduced significantly, thereby facilitating the replacement procedure. Performance of this proposed replaceable link is studied by conducting six nearly full scale EBF tests under quasi-static cyclic loading. The link length ratio, type of end-plated mid-splice connection, and the amount of residual drift are considered as test variables. The test results revealed that the inelastic rotation capacity of the detachable replaceable links exceeds the requirements of the AISC Seismic Provisions for Structural Steel Buildings. No failures are observed in the end-plated mid-splice connections demonstrating the potential of the proposed details. The detachable replaceable links are investigated by numerical analysis as well to further validate their applicability and to develop design recommendations.  相似文献   
102.
For seismic analysis of unreinforced masonry (URM) buildings characterized by a box-like behavior, a widely accepted model is based on the equivalent frame idealization of walls. The equivalent frame model uses 1D elements to represent the vertical piers and horizontal spandrels which are connected by rigid nodes. The mechanical characterization of the elements is one of the crucial aspects to predict reasonably the building seismic behavior. Through the comparison with pseudo-static and dynamic experimental tests performed on two-story full-scale buildings, this paper validates the frame modeling in the OpenSees framework, which includes a fiber-section force-based beam element for the axial-flexural behavior, coupled with a cyclic shear-deformation phenomenological law.  相似文献   
103.
杨洪渭  戎贤    张健新   《世界地震工程》2019,35(4):068-73
通过对2个新型装配式混凝土框架节点和1个现浇混凝土框架节点进行拟静力试验研究,对比分析装配式混凝土框架节点破坏特征、滞回曲线、骨架曲线、刚度退化和耗能能力等指标。研究结果表明:新型装配式混凝土框架节点比普通现浇混凝土框架节点具有较好的滞回性能,较高的耗能能力以及较缓的刚度退化。在满足梁筋锚固长度要求的前提下,预制梁内钢端头长度增加使框架节点抗震性能稍有提高。装配部分后浇混凝土可以提高框架节点的承载能力和刚度。采用ABAQUS有限元软件对节点进行数值模拟,发现模拟结果与试验结果吻合较好。  相似文献   
104.
大跨刚构桥结构桥跨较长和受力复杂。为提高抗震性能,需要对加固前后的桥梁进行抗震性能研究。以某双肢薄壁型高墩大跨度刚构桥为背景,采用ANSYS程序APDL语言,对结构进行合理的参数选取、网格划分和边界约束,结合抗震等级和桥梁规范等有关规定,研究整体结构在地震作用下的变化规律。通过沿墩高方向获取节点的方法,确定在地震作用下,各节点的最大位移从下到上逐渐增大。选取桥墩双肢相同部位各节点进行横向比较,总结得出双肢薄壁桥墩具有平分荷载和延长寿命的特点。为提高桥梁整体抗震性能,采取联结桥墩增大截面的方式进行加固,对比加固前后两模型在同一地震作用下的结构响应,得出该方法在提高结构整体刚度方面,效果显著。  相似文献   
105.
当前国家对建筑结构的抗震性能和震后功能恢复能力提出了更高要求。基于短剪切型消能梁段的受剪屈服特性和剪切扩孔型螺栓连接的受剪滑移性能,提出一种新型扩孔螺栓连接型消能梁段,可有效增大消能梁段的延性和耗能能力并同时减小消能梁段的损伤,使带扩孔螺栓连接型消能梁段的新型Y形偏心支撑结构更好地适应当前要求。采用有限元方法详细分析扩孔螺栓连接型消能梁段的滞回性能、破坏模式和耗能机理,由此得到其骨架曲线和力学模型,并阐述其力学模型的影响参数,为相应偏心支撑结构的设计和分析提供理论依据。  相似文献   
106.
In‐plane buckling‐restrained brace (BRB) end rotation induced by frame action is a commonly observed phenomenon in buckling‐restrained braced frames (BRBFs). However, its effect on BRB end connection behavior has not yet been clear. In this study, four BRB end deformation modes for quick determination of end rotational demand are proposed for non‐moment BRBF considering different BRB arrangements, installing story of BRBs, and boundary condition of corner gussets connected with column base. Key factors affecting BRB end rotation and flexural moments are examined theoretically by parametric analysis. Subassemblage tests of seven BRB specimens under horizontal cyclic loading were conducted by adopting two loading frames to impose the expected BRB end deformations. It shows that BRB end rotation subjected BRB ends to significant flexural moments, leading to premature yielding of BRB ends or even tendency of end zone buckling. The deformation modes, the flexural rigidity of BRB ends, and the initial geometric imperfections of BRBs were found to have significant influence on BRB end connection behavior. The triggering moment induced by BRB end rotation was the main contributor to end flexural moment. However, the moment amplification effect induced by flexure of BRB end zones became prominent especially for small flexural rigidity of BRB ends. Implications and future research needs for design of BRB end connections are provided finally based on the theoretical and experimental results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
107.
Inelastic deformation capacity of links is a factor that significantly influences design of steel eccentrically braced frames (EBFs). The link rotation angle is used to describe inelastic link deformation. The link rotation angle is generally calculated by making use of design story drifts that in turn are calculated by modifying the elastic displacements by a displacement amplification factor. This paper presents a numerical study undertaken to evaluate the displacement amplification factor given in ASCE7‐10 for EBFs and the rigid‐plastic mechanism used for calculating link rotation angles. A total of 72 EBFs were designed by considering the number of stories, the bay width, the link length to bay width ratio, and the seismic hazard level as the prime variables. All structures were analyzed using elastic and inelastic time history analyses. The results indicated that the displacement amplification factor given in ASCE7‐10 provides unconservative estimates of the story drifts. On the other hand, the rigid‐plastic mechanism provides conservative estimates of link rotations. Based on the results of the numerical study, a new set of displacement amplification factors that vary along the height of the structure and modifications to the rigid‐plastic mechanism were developed. In light of the proposed modifications, the EBFs were redesigned and analyzed using inelastic time history analysis. The results indicated that the proposed modifications provide improvements for the displacement amplification factor and link rotation angle calculation procedures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
108.
Dynamic finite element analyses of a four‐story steel building frame modeled as a fine mesh of solid elements are performed using E‐Simulator, which is a parallel finite element analysis software package for precisely simulating collapse behaviors of civil and building structures. E‐Simulator is under development at the National Research Institute for Earth Science and Disaster Prevention (NIED), Japan. A full‐scale shake‐table test for a four‐story frame was conducted using E‐Defense at NIED, which is the largest shaking table in the world. A mesh of the entire structure of a four‐story frame with approximately 19 million degrees of freedom is constructed using solid elements. The density of the mesh is determined by referring to the results of elastic–plastic buckling analyses of a column of the frame using meshes of different densities. Therefore, the analysis model of the frame is well verified. Seismic response analyses under 60, 100, and 115% excitations of the JR Takatori record of the 1995 Hyogoken‐Nanbu earthquake are performed. Note that the simulation does not reproduce the collapse under the 100% excitation of the Takatori record in the E‐Defense test. Therefore, simulations for the 115% case are also performed. The results obtained by E‐Simulator are compared with those obtained by the E‐Defense full‐scale test in order to validate the results obtained by E‐Simulator. The shear forces and interstory drift angles of the first story obtained by the simulation and the test are in good agreement. Both the response of the entire frame and the local deformation as a result of elastic–plastic buckling are simulated simultaneously using E‐Simulator. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
109.
Many reinforced‐concrete frames collapse via a soft‐story mechanism during severe earthquakes. Such collapses are mainly attributed to concentrated deformation in a soft story. Deformation control is thus important in preventing collapse. The frame pin‐supported wall structure is a type of rocking structure that releases constraints at the bottom of the wall. Previous research has obtained good results for the deformation control of this type of structure. However, the interior forces and strength demands of the pin‐supported wall have not been systematically explored. In this paper, a distributed parameter model is developed to investigate the strength demand of the wall in a frame pin‐supported wall structure. In the model, the pin‐supported wall is simplified as a bending beam and the frame is simplified as a shear beam. The two beams are joined by distributed shear connectors, so that the shear force can be transferred at any location on the interface. The model can be solved using differential equations based on equilibrium and compatibility. The accuracy of the model is verified using SAP2000 (Computers and Structures Inc., Berkeley, CA, USA). Displacement distribution of the structure and distributions of the moment and shear force within the pin‐supported wall are obtained for two typical external force profiles. It is found that the pin‐supported wall can effectively reduce the drift concentration factor. Distributions of the displacement, moment, and shear force are closely correlated with the relative stiffness of the wall and frame. Finally, recommendations on the stiffness and strength of a pin‐supported wall are made. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
110.
为实现WGS84和CGCS2000坐标系之间的转换,首先通过七参数法将WGS84坐标转换到ITRF坐标,然后再通过框架转换法转换到CGCS2000坐标,并进行实例计算和分析。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号