首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20900篇
  免费   3643篇
  国内免费   4654篇
测绘学   1582篇
大气科学   2410篇
地球物理   2982篇
地质学   11658篇
海洋学   4541篇
天文学   256篇
综合类   1561篇
自然地理   4207篇
  2024年   68篇
  2023年   249篇
  2022年   703篇
  2021年   820篇
  2020年   757篇
  2019年   955篇
  2018年   792篇
  2017年   866篇
  2016年   915篇
  2015年   982篇
  2014年   1223篇
  2013年   1102篇
  2012年   1363篇
  2011年   1317篇
  2010年   1139篇
  2009年   1409篇
  2008年   1269篇
  2007年   1495篇
  2006年   1524篇
  2005年   1361篇
  2004年   1215篇
  2003年   1148篇
  2002年   1053篇
  2001年   820篇
  2000年   712篇
  1999年   626篇
  1998年   521篇
  1997年   461篇
  1996年   418篇
  1995年   367篇
  1994年   304篇
  1993年   266篇
  1992年   233篇
  1991年   190篇
  1990年   121篇
  1989年   161篇
  1988年   81篇
  1987年   51篇
  1986年   42篇
  1985年   24篇
  1984年   18篇
  1983年   9篇
  1982年   10篇
  1981年   4篇
  1980年   2篇
  1979年   9篇
  1978年   5篇
  1977年   6篇
  1954年   3篇
  1877年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Recent observations suggest that the annual mean southward transport of the East Sakhalin Current (ESC) is significantly larger than the annual mean Sverdrup transport. Motivated by this observational result, transport of a western boundary current has been investigated using a simple numerical model with a western slope. This transport is defined as the instantaneous barotropic transport integrated from the western boundary to the offshore point where the barotropic velocity vanishes. The model, forced by seasonally varying wind stress, exhibits an annual mean of the western boundary current transport that is larger than that of the Sverdrup transport, as observed. The southward transport from October to March in the model nearly equals the instantaneous Sverdrup transport, while the southward transport from April to September decreases slowly. Although the Sverdrup transport in July vanishes, the southward transport in summer nearly maintains the annual mean Sverdrup transport, because the barotropic Rossby wave cannot intrude on the western slope. This summer transport causes the larger annual mean. Although there are some uncertainties in the estimation of the Sverdrup transport in the Sea of Okhotsk, the seasonal variation of the southward transport in the model is qualitatively similar to the observations.  相似文献   
92.
The Hawaii Institute of Geophysics began development of the Ocean Subbottom Seisometer (OSS) system in 1978, and OSS systems were installed in four locations between 1979 and 1982. The OSS system is a permanent, deep ocean borehole seismic recording system composed of a borehole sensor package (tool), an electromechanical cable, recorder package, and recovery system. Installed near the bottom of a borehole (drilled by the D/V Glomar Challenger), the tool contains three orthogonal, 4.5-Hz geophones, two orthogonal tilt meters; and a temperature sensor. Signals from these sensors are multiplexed, digitized (with a floating point technique), and telemetered through approximately 10 km of electromechanical cable to a recorder package located near the ocean bottom. Electrical power for the tool is supplied from the recorder package. The digital seismic signals are demultiplexed, converted back to analog form, processed through an automatic gain control (AGC) circuit, and recorded along with a time code on magnetic tape cassettes in the recorder package. Data may be recorded continuously for up to two months in the self-contained recorder package. Data may also be recorded in real time (digital formal) during the installation and subsequent recorder package servicing. The recorder package is connected to a submerged recovery buoy by a length of bouyant polypropylene rope. The anchor on the recovery buoy is released by activating either of the acoustical command releases. The polypropylene rope may also be seized with a grappling hook to effect recovery. The recorder package may be repeatedly serviced as long as the tool remains functionalA wide range of data has been recovered from the OSS system. Recovered analog records include signals from natural seismic sources such as earthquakes (teleseismic and local), man-made seismic sources such as refraction seismic shooting (explosives and air cannons), and nuclear tests. Lengthy continuous recording has permitted analysis of wideband noise levels, and the slowly varying parameters, temperature and tilt.Hawaii Institute of Geophysics Contribution 1909.  相似文献   
93.
本文根据植物生态学分析方法,通过对艾比湖ZKooB孔中孢粉组合及植被生态的定量分析,阐述了北疆内陆干旱区冰消期以来的气候演化状况。孢粉组合特征及其植被生态的定量分析研究表明,受大气降水以及大气和土壤中相对湿度波动变化的影响,艾比湖地区的生态环境特征在最近15000a中至少经历了10次比较明显的波动变化,并且与全球气候变化过程基本符合,表明中国西部干旱半干旱地区晚更新世以的气候环境演化过程是在全球变  相似文献   
94.
安徽宣城地区中晚更新世风成堆积与环境变迁   总被引:25,自引:7,他引:25  
通过对宣城向阳中晚更新世沉积剖面的综合研究,认为该剖面与中国北方同时代的黄土—古土壤剖面相比较,虽然长江下游以南地区中晚更新世多个冰期中风成堆积的单层厚度与累积厚度,亦即风成物质的沉积通量与沉积速率均比北方黄土区要小,但它们所反映的气候与环境的变化具有明显的可比性。  相似文献   
95.
南海北部及广东沿海新生代火山活动   总被引:17,自引:0,他引:17  
调查区新生代火山活动十分活跃。岩性以基性为主,少数属超基性Sr~(87/86)初始值最高0.706189,最低0.703178,陆区和海盆新生代火山岩均来自地幔。 K-Ar年龄最老62.86百万年,最新0.43百万年。从老至新可划分为8个活动期,分别为古新世早期、始新世早期、渐新世末期、中新世中期、中新世晚期、早更新世早期、早更新世晚期和中更新世中期。 海盆与陆区火山活动在岩性、同位素特征、活动时期、喷发方式以及岩浆来源等方面都十分相似,二者属统一的新生代火山岩区。  相似文献   
96.
太阳反射光对海洋水色卫星遥感的影响研究   总被引:3,自引:0,他引:3  
海洋水色卫星遥感的关键是水色图像资料的利用率。受到太阳反射光的影响使图像饱和是水色卫星图像的主要噪声之一。笔者首先论述了卫星海洋水色遥感中到达水色扫描仪的太阳反射光(即太阳耀光)的辐射量计算模式;然后介绍了产生太阳耀光模拟图像的全过程,并对我国FY-1B、美国的SeaSTAR和台湾省的ROCSAT-1号卫星作了全轨道下的太阳耀光模拟图像;最后,讨论了影响太阳耀光的主要因素,同时提出了减小太阳耀光提高海洋水色卫星遥感图像利用率的建议。  相似文献   
97.
RelationshipbetweenbiogeochemicalfeaturesofbiogenicelementsandflocculationintheChangjiangEstuary¥LinYi'an;TangRenyou;LiYan;Do...  相似文献   
98.
渤海南部海域年极值波浪和设计波浪的特征研究   总被引:1,自引:0,他引:1  
本文用统计计算和后报方法,获得了本海域不同海区多年年极值波高(H1/10)资料。用P-Ⅲ型和短期测波资料频率分析方法,估算了各海区的设计波高,并依据文献[3]计算出对应的平均周期。用Kolmogoroff适合度方法检验所得的结果表明,依P-Ⅲ型方法拟配的理论频率曲线与经验点十分吻合,从而确定了本海域不同海区最佳的设计波浪。分析本海域年极值波浪的基本特征表明,本海域除了渤海湾北部海区以外,主浪向一般为NNE向,渤海海峡区的年极值波高和设计波高均为最大,而向莱州湾及渤海湾沿岸海区逐渐减小;在沿岸海区,由龙口至黄河口一带的极值波高较大。  相似文献   
99.
Ocean current forecasting is still in explorative stage of study. In the study, we face some problems that have not been met before. The solving of these problems has become fundamental premise for realizing the ocean current forecasting. In the present paper are discussed in depth the physical essence for such basic problems as the predictability of ocean current, the predictable currents, the dynamical basis for studying respectively the tidal current and circulation, the necessity of boundary model, the models on regions with different scales and their link. The foundations and plans to solve the problems are demonstrated. Finally a set of operational numerical forecasting system for ocean current is proposed.  相似文献   
100.
A nutrient dynamic model coupled with a 3D physical model has been developed to study the annual cycle of phytoplankton production in the Yellow Sea. The biological model involves interactions between inorganic nitrogen (nitrate and ammonium), phosphate and phytoplankton biomass. The model successfully reproduces the main features of phytoplankton-nutrient variation and dynamics of production. 1. The well-mixed coastal water is characterized by high primary production, as well as high new production. 2. In summer, the convergence of tidal front is an important hydrodynamic process, which contributes to high biomass at frontal areas. 3. The evolution of phytoplankton blooms and thermocline in the central region demonstrate that mixing is a dominant factor to the production in the Yellow Sea. In this simulation, nitrate- and ammonium-based productions are estimated regionally and temporally. The northern Yellow Sea is one of the highly ranked regions in the Yellow Sea for the capability of fixing carbon and nitrogen. The annual averaged f-ratio of 0.37 indicates that regenerated production prevails over the Yellow Sea. The result also shows that phosphate is the major nutrient, limiting phytoplankton growth throughout the year and it can be an indicator to predict the bloom magnitude. Finally, the relative roles of external nutrient sources have been evaluated, and benthic fluxes might play a significant role in compensating 54.6% of new nitrogen for new production consumption.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号