首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9853篇
  免费   1549篇
  国内免费   1524篇
测绘学   591篇
大气科学   2910篇
地球物理   990篇
地质学   4603篇
海洋学   1096篇
天文学   30篇
综合类   644篇
自然地理   2062篇
  2024年   107篇
  2023年   333篇
  2022年   457篇
  2021年   512篇
  2020年   385篇
  2019年   485篇
  2018年   305篇
  2017年   290篇
  2016年   287篇
  2015年   387篇
  2014年   605篇
  2013年   467篇
  2012年   628篇
  2011年   586篇
  2010年   546篇
  2009年   566篇
  2008年   756篇
  2007年   612篇
  2006年   524篇
  2005年   463篇
  2004年   426篇
  2003年   325篇
  2002年   244篇
  2001年   270篇
  2000年   262篇
  1999年   209篇
  1998年   209篇
  1997年   241篇
  1996年   209篇
  1995年   231篇
  1994年   199篇
  1993年   190篇
  1992年   179篇
  1991年   157篇
  1990年   106篇
  1989年   95篇
  1988年   9篇
  1987年   6篇
  1986年   10篇
  1985年   7篇
  1984年   5篇
  1982年   7篇
  1980年   3篇
  1979年   3篇
  1965年   2篇
  1964年   2篇
  1958年   2篇
  1957年   3篇
  1955年   5篇
  1954年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
本文通过环境背景值、风化壳地球化学、对流层(大气气溶胶)地球化学和人为地球化学异常,初步探讨了南极长城站地区的现代环境地球化学特征。分析表明:环境要素固有的地球化学性质、区域环境条件和自然环境演变之间具有深刻的内在联系。  相似文献   
132.
春花秋月又一年,晨光暮色不释卷。与时俱进开新篇,殚精竭虑谋发展。刚刚过去的一年,是“十五”计划的总结之年。根据2005年11月30日最新发布的《中国学术期刊综合引证年度报告(2005)》(统计源刊5941种),《云南地理环境研究》影响因子为0.573,在云南各个高等院校所办的全部期刊中名列第一,在云南所有期刊中名列前茅,在全国地理类期刊中名列13,远远超前于不少“核心期刊”,为“十五”画上了一个圆满的句号。  相似文献   
133.
黄河影响下开封城市的历史演变   总被引:2,自引:0,他引:2  
河流对城市的形成和发展起着重要的作用,古人形象地把其比喻为“城市之血脉”。文章从不同的历史时期黄河及其分支对开封城市演变的影响进行分析,得出黄河与开封城市的关系存在着利与害的统一。开封城市的历史发展,即得益于黄河充足的水源,又受害于其频繁的决溢、泛滥、改道。因此,要采用先进的科学技术对黄河进行综合治理开发,使其恢复它应有的美好环境,更好地造福于人民。  相似文献   
134.
《地下水》2006,28(4):F0004-F0004
陕西省水工程勘察规划研究院始建于一九四九年。长期以来承担着全省地下水监测研究、地下水盗源调查评价、地下水开发利用规划、钻井技术设备研究、科技推广等专业按术工作和机井工程建设监督、质量管理,钻井施工资质管理等行业技术管理工作。具有国家甲级水文水资源调查评价、建设项目水资源论证、水文地质勘察、岩土工程资质.  相似文献   
135.
水文地质学作为与国民经济发展密切相关的应用学科,在世界各国水资源调查、保护和管理方面发挥着重要的支撑作用。2006年是国际水文地质学家协会(IAH)成立五十周年。因此,2006年10月09日-2006年10月13日国际水文地质学家协会和中国国土资源部将在北京市联合举办“第34届国际水文地质大会”。这将是继1988年中国在桂林市成功举办“第21届国际水文地质大会”之后,再次在中国举办国际水文地质大会。  相似文献   
136.
The purpose of the thesis is to analyze the temporal and dimensional distribution of sulfate-reducing bacteria (SRB) groups and quantity in Lake Erhai. In April and September 2005, two sediment cores were collected from Lake Erhai. SRB groups were analyzed by PCR with six-groups primers designed according to the specific 16SrDNA sequence. FISH (fluorescence in-situ hybridization) was established with the oligonucleotide probe (SRB385) and utilized to analyze SRB quantity in the sediments. The results showed that in the sediments of Lake Erhai four SRB groups were detected except Desulfobacterium and Desulfobacter, meanwhile Desulfovibrio-Desulfomicrobium were detected only in autumn; different SRB groups had different temporal and dimensional distribution, and each group in autumn is distributed more widely than in spring; FISH used to count SRB in the sediments of fresh lake was set up successfully; the analysis of correlation between the sediment's depth and SRB quantity had statistical meaning (P〈0.05) . The result showed that SRB quantity showed a decreasing trend with increasing depth. Through the analysis of randomized block designed analysis of variance, the difference in SRB quantity between spring and autumn also had statistical meaning (P〈0.001), which revealed SRB quantity in autumn was larger than in spring; the result of FISH showed that there were some SRB in the deeper sediments in which no above-mentioned six SRB groups were detected by PCR. SRB groups in the sediments of Lake Erhai were rich, and the quantities of SRB groups in autumn were larger than in spring; possibly there were uncultivable SRB groups in the sediments of Lake Erhai.  相似文献   
137.
Arsenic is one of the most important single-substance toxicants in the environment. In Inner Mongolia of China, 300000 residents are believed to drink water containing 〉50 μg/L. Skin lesions have been known as the most common consequences resulting from chronic exposure to arsenic. To clarify the prevalence of arsenic-induced skin lesions, it is important to assess the impact of this problem on the target population, and to make future planning. We evaluated the association between multi-level inorganic arsenic exposure from drinking water and skin lesions in an arsenic-affected area in Inner Mongolia, China. 109 and 32 subjects fi'om high-level arsenic-affected (〉5 μg/L) village and low-level (≤50 μg/L) village were recruited and had detailed physical examination with special emphasis on arsenic-related skin lesions. Arsenic exposure was measured for each participant with As concentration of primary well and the duration of using the well was recorded. Arsenic-induced skin lesions including keratosis, pigmentation, and/or leucomelanosis were diagnosed in 56 and 3 subjects in the two villages, respectively. Logistic regression was conducted to calculate prevalence-odd ratios of skin lesions by levels of arsenic exposure with adjustment of sex, age group, smoking and duration of exposure. A consistent dose-response relationship between arsenic exposure level and skin lesion risk was observed.  相似文献   
138.
Biological iron and manganese removal utilizing indigenous iron and manganese oxidizing bacteria (IRB hereafter) in groundwater can also be applied to arsenic removal according to our pilot-scale test. The arsenic removal probably occurred through sorption and complexation of arsenic to iron and manganese oxides formed by enzymic action of IRB. We investigated the chemical properties of iron and manganese oxides in IRB floc and the valence state of arsenic sorbed to the floc to clarify the mechanisms of the arsenic [especially As (Ⅲ)] removal. The floc samples were collected from two drinking water plants using IRB (Jyoyo and Yamatokoriyama, Japan), and our pilot - scale test site where arsenic and iron removal using IRB is under way (Mukoh, Japan). The Jyoyo and Yamatokoriyama IRB floc samples were subjected to As (Ⅲ) and As(Ⅴ) sorption experiments. The elemental composition of the floc samples was measured. XANES spectra were collected on As, Fe and Mn K-edges at synchrotron radiation facility Spring 8 (Hyogo, Japan). FT-IR and the X-ray diffraction spectra of the samples were also obtained. The IRB floc contained ca. 35 % Fe, 0.3%-3.5% Mn and 2%-6% P. The samples were highly amorphous and contained ferrihidrites and hydrated iron phosphate. According to XANES analyses of IRB, As associated with IRB was in +5 valence state when As (Ⅲ) (or As (Ⅴ)) was added in laboratory sorption test, Fe in +3 valence state, and Mn a mixture of+3 and +4 valence states. Small shift was observed in the XANES spectra of IRB on As K-edge as the equilibration time of the sorption experiment was increased. Gradual oxidation of a small amount of As (Ⅲ) associated with IRB or change in arsenic binding with sorption site were the probable mechanism.  相似文献   
139.
Although inorganic species are predominant in natural systems, but there are many kinds of organoarsenic species such as methylated and phenylated arsenic compounds. Phenylarsonic acid (PA) is a degradation product of organoarsenics used for chemical warfare agents, which has been detected in well water at the disposal site of the agents in Japan. There are few reports studying behavior of PA in soil. In this study, PA was adsorbed onto ferrihydrite and its chemical forms were determined using high performance liquid chromatography connected to inductivity-coupled plasma mass spectrometry (HPLC-ICP-MS). 100 mg/kg of PA was mixed with 0.03 g of 2-line ferrihydrite. For each suspension, pH was adjusted by HNO3 or NaOH. Each sample was incubated for more than 19 hours and the final pH was measured. After filtration, the chemical form of arsenic in the filtrate was measured using HPLC-ICP-MS. In addition, ferrihydrite separated by filtration was dissolved by 3 ml of 0.5 M HCI and the arsenic species in the solution was detected by HPLC-ICP-MS (column: Tosoh TSKgel SuperlC-AP, eluent: 0.01 M HNO3). It was verified that PA is not degraded by heating in 0.5 M HCl solution. At pH 3.1, any arsenic compounds were not detected from the solution, because almost all arsenic species were adsorbed onto ferrihydrite at lower pH. At pH= 12, however, 7%-10% of inorganic arsenic was detected in the solution. In solid phase, there are some problems to determine the precise ratio of inorganic and organic species. When the solution includes Fe ion at 0.01 M level, the retention time of arsenic species drifted compared to those in standard solution, which makes it difficult to determine precisely the arsenic species adsorbed on ferrihydrite. Therefore, more study is needed to determine the ratio of inorganic and organic species in the system.  相似文献   
140.
Uranium processing and mining activities that generate many contaminants, such as high concentrations of U (VI), sulfate and heavy metals (Zn, Cu, Ni, etc), may pose a serious threat to the groundwater resources. In recent years, considerable research has been conducted respectively on two kinds of permeable reactive barriers (PRB), including zerovalent iron (ZVI) and sulfate reducing bacteria (SRB), for in-situ removal of these pollutants from groundwater. However, little investigation has been carried out on the potential benefits of bioaugmenting ZVI barriers to enhance the elimination of the pollutants by combining ZVI with SRB systems. The main goal of this study was to conduct batch and column experiments to determine whether the combination of SRB and ZVI can function synergistically and accelerate the rate of pollutant removal. The results of anaerobic batch experiments demonstrated that although the integrated ZVI/PRB system itself has no ability to reduce and remove sulfate directly, SRB can utilize hydrogen gas produced during the slow process of ZVI corrosion as an electron donor to raise biomass yields significantly and accelerate reductive sulfate removal. In particular, ferrous cations produced as the byproduct of ZVI corrosion process reacted with hydrogen sulfide from sulfate reduction and formed iron-bearing sulfide precipitates, which can stimulate the growth of SRB and promote sulfate removal activity by eliminating the biotoxicity of hydrogen sulfide. It was also shown that secondary mineral products (pyrite/ferrous sulfide) formed as a consequence of microbial sulfate reduction and ZVI corrosion process can enhance the microbial precipitation of soluble U (VI) as insoluble uraninite(uranium dioxide).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号