首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   5篇
  国内免费   3篇
大气科学   3篇
地球物理   26篇
地质学   8篇
海洋学   1篇
自然地理   10篇
  2024年   2篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2002年   2篇
  1999年   1篇
  1998年   1篇
  1983年   1篇
排序方式: 共有48条查询结果,搜索用时 15 毫秒
31.
Partitioning of precipitation into evapotranspiration and runoff is controlled by climate and catchment characteristics. The degree of control exerted by these factors varies with the spatial and temporal scales of processes modeled. The Budyko framework or the “limits” concept was used to model water balance at four temporal scales (mean annual, annual, monthly and daily). The method represents a top-down approach to hydrologic modeling and is expected to achieve parsimony of model parameters. Daily precipitation, potential evapotranspiration, and streamflow from 265 catchments in Australia were used. On a mean annual basis, the index of dryness defined as the ratio of potential evapotranspiration to precipitation was confirmed to be a dominant factor in determining the water balance with one model parameter. Analysis of the data, however, suggested increased model complexity is necessary on finer time scale such as monthly. In response, the Budyko framework for mean annual water balance was extended to include additional factors and this resulted in a parsimonious lumped conceptual model on shorter-time scale. The model was calibrated and tested against measured streamflow at variable time scales and showed promising results. The strengths of the model are consistent water balance relationships across different time scales, and model parsimony and robustness. As result, the model has the potential to be used to predict streamflow for ungauged catchments.  相似文献   
32.
By taking the sum of annual precipitation and lateral water input (in which irrigation water withdrawal is the main component) for water availability, the Budyko hypothesis and Fu's formula derived from it was extended to the study of oases in the Tarim Basin, Northwest China. For both long‐term (multi‐year) and annual values on water balances in the 26 oases subregions, the extended Fu's formula was confirmed. Regional patterns on water balance on the 26 oases subregions were related to change in land‐use types due to increased area for irrigation. Moreover, an empirical formula for the parameter was established to reflect the influences of change in land use on water balance. The extended Budyko framework was employed to evaluate the impact of irrigation variability on annual water balance. According to the multi‐year mean timescale, variabilities in actual evapotranspiration in the oases were mainly controlled by variability in irrigation water withdrawal rather than potential evapotranspiration. The influences of variability on potential evapotranspiration became increasingly apparent together with increases in irrigation water withdrawal. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
33.
The Budyko framework is an efficient tool for investigating catchment water balance, focusing on the effects of seasonal changes in climate (S) and vegetation cover (M) on catchment evapotranspiration (ET). However, the effects of vegetation seasonality on ET remain largely unknown. The present study explored these effects by modelling interannual variations in ET considering vegetation and climate seasonality using the Budyko framework. Reconstructed 15-day GIMMS NDVI3g timeseries data from 1982 to 2015 were used to estimate M and extract the relative duration of the vegetation growing season (GL) in the Yellow River Basin (YRB). To characterize S, seasonal variations in precipitation and potential ET were extracted using a Gaussian algorithm. Analysis of the observed datasets for 19 catchments revealed that interannual variation in the catchment parameter ϖ (in Fuh's equation) was significantly and positively correlated with M and GL. Conversely, ϖ was significantly but negatively correlated with S. Furthermore, stepwise linear regression was used to calibrate the empirical formula of ϖ for these three dimensionless parameters. Following validation, based on observations in the remaining 11 catchments, ϖ was integrated into Fuh's equation to accurately estimate annual ET. Over 79% subcatchments showed an upward trend (0.9 mm yr−1), whereas fewer than 21% subcatchments showed a downward trend (−0.5 mm yr−1) across YRB. In the central region of the middle reach, ET increased with increased M, prolonged GL, and decreased S, whereas in the source region of YRB, ET decreased with decreased M and shortened GL. Our study provides an alternative method to estimate interannual ET in ungauged catchments and offers a novel perspective to investigate hydrological responses to vegetation and climate seasonality in the long-term.  相似文献   
34.
Runoff, which is a key component in the hydrological cycle, is mainly controlled by climate factors and land-surface elements in non-humid regions. The impacts of climate and vegetation changes on runoff based on Budyko hypothesis in the middle and upper reaches of the Pearl River Basin was analyzed in this article. First, the temporal trend of variables in the study area during 1981-2013 was examined by using the Mann-Kendall trend test with trend-free pre-whitening. Second, the relationship of the parameter n in Fu's equation with factors of climate and vegetation coverage was built to reveal the time-variation process of n. Finally, the effects of climatic factors and vegetation coverage on runoff were assessed by analyzing the sensitivity of runoff to each variable. It is found that average temperature (T), maximum temperature (Tmax) and minimum temperature (Tmin) in the study area present an increasing trend while runoff (Q), precipitation (P), wind speed (u2) and relative humid (RH) present decreasing trend. The parameter n in Fu's equation is significantly related to both climatic factors (including precipitation (P), average temperature (T), relative humid (RH), sunshine duration (S), wind speed (u2)) and vegetation coverage index (NDVI). In terms of sensitivity of Runoff (Q) to the variation of each climatic factors and NDVI in the middle and upper reaches of the Pearl River Basin, precipitation (P) and NDVI have the highest sensitivity, followed by other climatic factors. Additionally, the precipitation (P) reduction is the main driving factor to the decline in runoff, while vegetation coverage is another important factor. In general, climate change affects runoff not only by changing the hydrological inputs (precipitation (P) and potential evaporation (PET) but also by altering the watershed characteristics as represented by the parameter n, while the impacts of vegetation coverage on runoff are exerted mainly through the alteration of the watershed characteristics.  相似文献   
35.
The problem to predict a rotation (orientation) from corresponding geocoded data is discussed and a general solution by virtue of embedding the group of rotations in a real vector space is presented. It is referred to as kriging in embedding spaces as developed in part I of this contribution, and basically the same arguments apply and lead to equivalent results. However, the assumptions of isotropy have to be restated and reinterpreted. A one-to-one correspondence of reasonable isotropy assumptions for rotations represented as axes and for rotations represented by matrices does not seem to exist.  相似文献   
36.
The impact of interannual variability of precipitation and potential evaporation on the long-term mean annual evapotranspiration as well as on the interannual variability of evapotranspiration is studied using a stochastic soil moisture model within the Budyko framework. Results indicate that given the same long-term mean annual precipitation and potential evaporation, including interannual variability of precipitation and potential evaporation reduces the long-term mean annual evapotranspiration. This reduction effect is mostly prominent when the dryness index (i.e., the ratio of potential evaporation to precipitation) is within the range from 0.5 to 2. The maximum reductions in the evaporation ratio (i.e., the ratio of evapotranspiration to precipitation) can reach 8–10% for a range of coefficient of variation (CV) values for precipitation and potential evaporation. The relations between the maximum reductions and the CV values of precipitation and potential evaporation follow power laws. Hence the larger the interannual variability of precipitation and potential evaporation becomes, the larger the reductions in the evaporation ratio will be. The inclusion of interannual variability of precipitation and potential evaporation also increases the interannual variability of evapotranspiration. It is found that the interannual variability of daily rainfall depth and that of the frequency of daily rainfall events have quantitatively different impacts on the interannual variability of evapotranspiration; and they also interact differently with the interannual variability of potential evaporation. The results presented in this study demonstrate the importance of understanding the role of interannual variability of precipitation and potential evaporation in land surface hydrology under a warming climate.  相似文献   
37.
实际蒸散发(ET)是水文循环的关键环节,分布式量化ET是区域水量平衡计算的重要内容。本文基于Budyko水热耦合方程推算单作物系数,在单作物系数和基于遥感方法的叶面积指数(LAI)之间进行统计回归,建立计算LAI的模式,实现Budyko方程进行区域ET估算的空间分辨率提升。洮河流域的范例研究证实了两种方法耦合在复杂地理-生态区间应用的合理性。本文为区域ET的分布式量化研究提供了一种新的思路。  相似文献   
38.
Potential sites of nuclear waste deposits in the Federal Republic of Germany are situated in areas of low seismicity. Nevertheless, seismic hazard assessment has to be performed for a very long time period in order to prove the facilities of the repositories able to withstand seismic induced loads; even though there is a considerable debate whether or not it is possible to quantify the seismic risk in such an area.

A combination of deterministic and probabilistic methods is used to assess the seismic hazard for a site in Northern Germany, fulfilling the standards of the German building code for nuclear power plants. As an example, the site of the former iron ore mine Konrad is investigated. The deterministic method is based on the assumption that the strongest earthquakes inside a tectonic region can happen everywhere there, also near the selected site. For the probabilistic method, several models describing the seismicity in an area of 200 km around the site are used to show the influence of the variability in input parameters, like the maximum intensity of each source region on the exceeding probability of the site intensity. It can be shown that the seismic hazard of a site in an area of low seismicity is mainly caused by the effects of distant but strong source regions and the background seismicity for very low probabilities.

Probabilistic evaluation has the advantage of quantifying the seismic risk. But deterministic and probabilistic methods together seem a practical tool for mutual control of the results and to overcome the weakness of each approach alone. The historical German earthquake catalog with an observation period of about 1200 years is the basis for the input data for a probabilistic model. From a deep knowledge of geological development and structural geology, the time history of the surrounding faults is developed. Indications were found that the nearest and most important fault was active at least 5 Ma ago. The combination of both seismicity and tectonics provides the basis for a long term prognostic with probabilities of exceedance in the order of 10−5 per year.

For the investigated site the following parameters were derived: site intensity as a function of exceeding probability; site acceleration; strong motion duration; site dependent response spectra for the surface and the underground inside the mine.  相似文献   

39.
Quantifying the relative contributions of different factors to runoff change is helpful for basin management, especially in the context of climate change and anthropogenic activities. The effect of snow change on runoff is seldom evaluated. We attribute the runoff change in the Heihe Upstream Basin (HUB), an alpine basin in China, using two approaches: a snowmelt-based water balance model and the Budyko framework. Results from these approaches show good consistency. Precipitation accounts for 58% of the increasing runoff. The contribution of land-cover change seems unremarkable for the HUB as a whole, where land-cover change has a major effect on runoff in each sub-basin, but its positive effect on increasing runoff in sub-basins 1 and 3 is offset by the negative effect in sub-basin 2. Snow change plays an essential role in each sub-basin, with a contribution rate of around 30%. The impact of potential evapotranspiration is almost negligible.

EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR S. Huang  相似文献   
40.
Investigating the changes in streamflow regimes in response to various influencing factors contributes to our understanding of the mechanisms of hydrological processes in different watersheds and to water resource management strategies. This study examined streamflow regime changes by applying the indicators of hydrologic alteration method and eco-flow metrics to daily runoff data (1965–2016) from the Sandu, Hulu and Dali Rivers on the Chinese Loess Plateau, and then determined their responses to terracing, afforestation and damming. The Budyko water balance equation and the double mass curve method were used to separate the impacts of climate change and human activities on the mean discharge changes. The results showed that the terraced and dammed watersheds exhibited significant decreases in annual runoff. All hydrologic metrics indicated that the highest degree of hydrologic alteration was in the Sandu River watershed (terraced), where the monthly and extreme flows reduced significantly. In contrast, the annual eco-deficit increased significantly, indicating the highest reduction in streamflow among the three watersheds. The regulation of dams and reservoirs in the Dali River watershed has altered the flow regime, and obvious decreases in the maximum flow and slight increases in the minimum flow and baseflow indices were observed. In the Hulu River watershed (afforested), the monthly flow and extreme flows decreased slightly and were categorized as low-degree alteration, indicating that the long-term delayed effects of afforestation on hydrological processes. The magnitude of the eco-flow metrics varied with the alteration of annual precipitation. Climate change contributed 67.47% to the runoff reduction in the Hulu River watershed, while human activities played predominant roles in reducing runoff in the Sandu and Dali River watersheds. The findings revealed distinct patterns and causes of streamflow regime alteration due to different conservation measures, emphasizing the need to optimize the spatial allocation of measures to control soil erosion and utilize water resources on the Loess Plateau.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号