首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   54篇
  国内免费   51篇
大气科学   4篇
地球物理   143篇
地质学   140篇
海洋学   32篇
天文学   4篇
综合类   3篇
自然地理   227篇
  2024年   1篇
  2023年   7篇
  2022年   13篇
  2021年   21篇
  2020年   24篇
  2019年   14篇
  2018年   33篇
  2017年   17篇
  2016年   17篇
  2015年   10篇
  2014年   21篇
  2013年   39篇
  2012年   30篇
  2011年   24篇
  2010年   22篇
  2009年   20篇
  2008年   23篇
  2007年   27篇
  2006年   19篇
  2005年   18篇
  2004年   23篇
  2003年   17篇
  2002年   16篇
  2001年   16篇
  2000年   13篇
  1999年   15篇
  1998年   13篇
  1997年   11篇
  1996年   8篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1980年   1篇
排序方式: 共有553条查询结果,搜索用时 15 毫秒
51.
鄂尔多斯市地处温带草原向荒漠草原过渡的半干旱区,是中国沙漠化问题较为严重的区域之一,其土地沙漠化发展和逆转过程及影响因素在北方农牧交错带具有代表性。以7期Landsat卫星遥感数据为信息源提取沙漠化土地类型及程度的时空格局信息,分析了该地区自1975年以来的土地沙漠化过程,并结合气象及社会经济数据采用主成分分析法对驱动因子进行定量分析。结果表明:在脆弱生态环境背景下,鄂尔多斯市土地沙漠化受人口数量增加、过垦及过牧等人为因素的严重影响。不同时段土地沙漠化发展的方向与驱动力都有所不同,1975-2000年是土地沙漠化的急剧发展期,驱动力以人为因素为主导,自然因素为基础;2000-2015年是土地沙漠化的逆转期,驱动力以自然因素为主,人为因素为辅。  相似文献   
52.
风沙灾害是气象灾害的重要组成部分,具有影响范围大、季节性强、灾害损失大等特点,已成为中国北方沙区的生态灾难,严重影响人居环境和社会经济的可持续发展。为了评估风沙灾害对中国社会经济的影响,已有学者对中国风沙灾害问题进行了长期研究,但对区域风沙灾害风险系统评估研究相对较少,尚未建立系统的风沙灾害风险评价体系。在综合分析近30年相关文献的基础上,借鉴其他自然灾害评估方法,从风沙灾害风险评估理论内涵、评估指标及评估方法等方面对相关研究进行了全面的分析,指出目前风沙灾害风险评估还存在理论不完善、评估模型不合理、孕灾环境指标量化不细致和指标体系繁杂、风险评估方法单一、指标分级和权重计算的主观性强、社会经济数据不能空间化等问题。因此,未来在风沙灾害评估研究时需借鉴、引入和融合其他自然灾害风险评估理论和技术方法,综合近年来在风沙物理学、风沙地貌学、防沙治沙工程学、沙漠化遥感技术和理论等方面的成果,建立多指标的综合风沙灾害评估模型,为预防区域风沙灾害、降低风沙灾害损失和保障"一带一路"经济发展提供理论依据。  相似文献   
53.
青藏高原沙漠化土地空间分布及区划   总被引:4,自引:1,他引:3  
利用野外调查数据、遥感影像和已有研究成果,构建了一套适用于青藏高原沙漠化土地的分类分级指标体系及遥感解译标志。以此为基础,选取目视解译法监测青藏高原沙漠化土地的空间分布特征。结果表明:2015年青藏高原沙漠化土地面积392 913km2,占高原土地总面积的15.1%,主要包括沙质沙漠化土地、砾质沙漠化土地和风蚀残丘3种类型。沙漠化土地以中度和轻度沙漠化土地为主,重度和极重度沙漠化土地面积仅占沙漠化土地总面积的12.2%。空间上,沙漠化土地集中分布在高原的北部和西部地区,其他地区零散分布。自东南向西北,沙漠化土地面积逐渐增大,沙漠化程度不断加重。以沙漠化土地空间分布数据(面积、类型、程度、空间特征和驱动因素)为基础,结合气候、地貌、第四纪沉积物和人类活动等数据,将青藏高原沙漠化区划分为雅鲁藏布江半干旱高山宽谷沙漠化区、藏北青南高寒高原面沙漠化区、柴达木干旱盆地沙漠化区、黄河上游半干旱河流盆地沙漠化区和“三江”流域湿润半湿润高山沙漠化区。  相似文献   
54.
The aeolian sand transport model SAFE and the air flow model HILL were applied to evaluate cross‐shore changes at two nourished beaches and adjacent dunes and to identify the response of aeolian sand transport and morphology to several nourishment design parameters and fill characteristics. The main input of the model consisted of data on the sediment, tide and meteorological conditions, and of half‐yearly measured characteristics of topography, vegetation and sand fences. The cross‐shore profiles generated by SAFE–HILL were compared to measured cross‐shore profiles. The patterns of erosion and deposition, and the morphological development corresponded. In general, the rates of aeolian sand transport were overestimated. The impact of parameters that are related to beach nourishment (namely grain size, adaptation length and beach topography) on profile development was evaluated. Grain size affected the aeolian sand transport rate to the foredunes, and therefore the morphology. Adaptation length, which is a measure of the distance over which sediment transport adapts to a new equilibrium condition, affected the topography of the beach in particular. The topography of a beach nourishment had limited impact on both aeolian sand transport rate and morphology. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
55.
This paper reports on a wind tunnel investigation of particle segregation, ripple formation and surface armouring within sand beds of systematically varied particle size distribution, from coarsely skewed to bimodal. By design, the system was closed with no external inputs of mass from an external particle feed. Particles too coarse to travel in saltation for the given range in wind speed were dyed red in order to distinguish them in optical images from finer sand particles, which could be entrained into the unidirectional airflow. A 3D laser scanner measured the changing bed topography at regular time intervals during 18 experiments involving varied combinations of wind speed and bed texture. Image classification techniques were used to investigate the coincident self‐organization of the two populations of particles, as distinguished by their colour. As soon as saltation commenced, some of the red particles segregated into thin discontinuous patches. Particle trapping and sheltering on these rough patches was strongly favoured, causing them to grow preferentially. During the earliest stages of formation, bedform growth coincided with: (i) rapid coarsening of the surface texture; and (ii) the merging of proto‐ripple ‘crests’ to generate larger rhythmic bedforms of lower frequency. Consistent with previous work, ripple size was observed to increase under stronger winds when not exceeding the threshold for entrainment of the coarse‐mode or red particles from the crest. With declining rates of mass transport and particle segregation as the bed surface armoured, and the consequent deceleration of ripple propagation through to the end of each experiment, all surfaces eventually attained a steady‐state morphometry. At saturation, the largest ripples developed on beds having the lowest initial concentration of red particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
56.
Concepts derived from previous studies of offshore winds on natural dunes are evaluated on a dune maintained for shore protection during three offshore wind events. The potential for offshore winds to form a lee‐side eddy on the backshore or transfer sediment from the dune and berm crest to the water are evaluated, as are differences in wind speed and sediment transport on the dune crest, berm crest and a pedestrian access gap. The dune is 18–20 m wide near the base and has a crest 4.5 m above backshore elevation. Two sand‐trapping fences facilitate accretion. Data were obtained from wind vanes on the crest and lee of the dune and anemometers and sand traps placed across the dune, on the beach berm crest and in the access gap. Mean wind direction above the dune crest varied from 11 to 3 deg from shore normal. No persistent recirculation eddy occurred on the 12 deg seaward slope. Wind speed on the berm crest was 85–89% of speed at the dune crest, but rates of sediment transport were 2.27 times greater during the strongest winds, indicating that a wide beach overcomes the transport limitation of a dune barrier. Limited transport on the seaward dune ramp indicates that losses to the water are mostly from the backshore, not the dune. The seaward slope gains sand from the landward slope and dune crest. Sand fences causing accretion on the dune ramp during onshore winds lower the seaward slope and reduce the likelihood of detached flows during offshore winds. Transport rates are higher in access gaps than on the dune crest despite lower wind speeds because of flatter slopes and absence of vegetation. Transport rates across dunes and through gaps can be reduced using vegetation and raised walkover structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
57.
Experimental study of aeolian sand ripples in a wind tunnel   总被引:1,自引:0,他引:1       下载免费PDF全文
The topographic parameters and propagation velocity of aeolian sand ripples reflect complex erosion, transport, and deposition processes of sand on the land surface. In this study, three Nikon cameras located in the windward (0–1 m), middle (4.5–5.5 m), and downwind (9–10 m) zones of a 10 m long sand bed are used to continuously record changes in sand ripples. Based on the data extracted from these images, this study reaches the following conclusions. (1) The initial formation and full development times of sand ripples over a flatbed decrease with wind velocity. (2) The wavelengths of full development sand ripples are approximately twice the wavelengths of initially formed sand ripples. Both wavelengths increase linearly with friction velocity. During the developing stage of sand ripples, the wavelength increases linearly with time. (3) The propagation velocity of full development sand ripples is approximately 0.6 times that of the initially formed sand ripples. The propagation velocity of both initial and full development of sand ripples increase as power functions with respect to friction velocity. During the developing stage of sand ripples, the propagation velocity decreases with time following a power law. These results provide new information for understanding the formation and evolution of aeolian sand ripples and help improve numerical simulations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
58.
This paper presents results from one of the few scientific studies to examine the physical characteristics of aeolian sediment transport in an alpine area, where topographically reinforced foehn winds initiate dust storm events. The major objective of this study is to improve knowledge of aeolian processes in mid-latitude alpine regions experiencing extreme wind speeds. Of particular interest is the role of surface characteristics in contributing to the unusually deep saltation layer which is seen to form over fluvio-glacial deposits in the Southern Alps of New Zealand. Sediment was collected at several heights (0ċ5, 1, 2 and 4 m) and locations over a large alpine braided river delta, and standard laboratory techniques used to examine grain size characteristics. An image processing technique was also used to evaluate grain roundness. Grains filtered from the airstream at 0ċ5 m and 1 m above such surfaces were found to display a mean grain size of approximately 300 to 435 μm, resembling grain size characteristics of saltation clouds previously observed in high latitude, cold climate locations, in contrast to desert and prairie environments. Samples collected at 2 and 4 m above the surface were found to consist of 60 to 65 per cent sand-sized material, with some grains exceeding 1–1ċ5 mm in diameter. Grain shape analysis conducted on silt- and clay-sized grains filtered from the airstream above mixed sand and gravel surfaces showed such grains to display an increase in grain roundness with height. This characteristic is thought to reflect the airstream's shape-sorting ability and has important implications with respect to the often observed increase in grain roundness in aeolian deposits with increasing distance from source areas. Namely, if more rounded grains are preferentially carried higher into the airstream and therefore into regions of higher wind speed, they should theoretically be transported further from the entrainment zone before being deposited. The high wind speeds observed, often exceeding 30 m s−1, are seen to transport significantly larger sediment than reported in the literature for desert and prairie environments. In addition, the mixture of grain sizes, and especially the pebble- and cobble-sized clasts that dominate the fluvio-glacial deposits associated with the braided rivers in this mountain region, also appear to increase significantly the trajectory height of saltating sand grains. As a result of these two factors, the depth of the saltation cloud often exceeds 1 m. Observations made in this study therefore highlight the need for field and laboratory aeolian process studies to be extended to examine grain transport over coarse-grained beds during much higher wind velocities than typically reported in the literature. Such studies would provide a valuable insight into aeolian processes in high latitude/altitude environments, such as loess genesis. © 1997 by John Wiley & Sons, Ltd.  相似文献   
59.
Coastal dunes provide essential protection for infrastructure in developed regions, acting as the first line of defence against ocean-side flooding. Quantifying dune erosion, growth and recovery from storms is critical from management, resiliency and engineering with nature perspectives. This study utilizes 22 months of high-resolution terrestrial LiDAR (Riegl VZ-2000) observations to investigate the impact of management, anthropogenic modifications and four named storms on dune morphological evolution along ~100 m of an open-coast, recently nourished beach in Nags Head, NC. The influences of specific management strategies – such as fencing and plantings – were evaluated by comparing these to the morphologic response at an unmanaged control site at the USACE Field Research Facility (FRF) in Duck, NC (33 km to the north), which experienced similar environmental forcings. Various beach-dune morphological parameters were extracted (e.g. backshore-dune volume) and compared with aeolian and hydrodynamic forcing metrics between each survey interval. The results show that LiDAR is a useful tool for quantifying complex dune evolution over fine spatial and temporal scales. Under similar forcings, the managed dune grew 1.7 times faster than the unmanaged dune, due to a larger sediment supply and enhanced capture through fencing, plantings and walkovers. These factors at the managed site contributed to the welding of the incipient dune to the primary foredune over a short period of less than a year, which has been observed to take up to decades in natural systems. Storm events caused alongshore variable dune erosion primarily to the incipient dune, yet also caused significant accretion, particularly along the crest at the managed site, resulting in net dune growth. Traditional empirical Bagnold equations correlated with observed trends of backshore-dune growth but overpredicted magnitudes. This is likely because these formulations do not encompass supply-limiting factors and erosional processes. © 2019 John Wiley & Sons, Ltd.  相似文献   
60.
A new type of horizontal trap was developed for measuring the aeolian sand transport rate on a flat surface. The trap consists of an adjustable frame that is embedded level with the sand surface, into which a plastic liner is installed and filled with water to capture the blown sand. The water trap has high efficiency and does not disturb the wind field or induce upwind scour. Deployment on Padre Island, Texas, indicated that this portable and adjustable trap catches and retains all the sand blown into it, even under relatively strong wind. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号