首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2477篇
  免费   253篇
  国内免费   394篇
测绘学   33篇
大气科学   175篇
地球物理   392篇
地质学   793篇
海洋学   557篇
天文学   740篇
综合类   122篇
自然地理   312篇
  2024年   16篇
  2023年   37篇
  2022年   83篇
  2021年   97篇
  2020年   84篇
  2019年   124篇
  2018年   59篇
  2017年   70篇
  2016年   65篇
  2015年   77篇
  2014年   124篇
  2013年   128篇
  2012年   100篇
  2011年   116篇
  2010年   118篇
  2009年   186篇
  2008年   161篇
  2007年   184篇
  2006年   193篇
  2005年   171篇
  2004年   170篇
  2003年   129篇
  2002年   115篇
  2001年   83篇
  2000年   68篇
  1999年   87篇
  1998年   58篇
  1997年   31篇
  1996年   30篇
  1995年   20篇
  1994年   17篇
  1993年   18篇
  1992年   11篇
  1991年   8篇
  1990年   9篇
  1989年   7篇
  1988年   10篇
  1987年   4篇
  1986年   10篇
  1985年   16篇
  1984年   9篇
  1983年   9篇
  1982年   5篇
  1981年   6篇
  1978年   1篇
排序方式: 共有3124条查询结果,搜索用时 15 毫秒
31.
根据2005年4~5月在黄海和长江口海域进行的春季底拖网调查,应用稳定同位素方法研究了黄海中南部鯷鱼(Engraulis japonicus)及其可能摄食饵料的碳氮稳定同位素比值,结果表明:(1)黄海中南部鯷鱼的食物组成为不同粒径的浮游动物、太平洋磷虾(Euphausia pacifuca)和仔稚鱼,其中以粒径为500-900μm的浮游动物为主,贡献比例占61%~84%;仔稚鱼贡献比例占16%~21%,较传统胃含物方法分析的结果小;(2)黄海中部海域鯷鱼的碳氮稳定同位素比值平均值较南部海域高,原因可能与各海域的能量来源不同或存在微食物环有关,也可能与不同海域鯷鱼的能量转换途径不一样,即与食物链长短不一有关.  相似文献   
32.
渤海湾水环境氮、磷营养盐分布特点   总被引:10,自引:2,他引:10  
渤海是一个半封闭的陆架边缘海,主要由辽东湾、渤海湾、莱州湾及中央海区组成,面积为7.7×104 km2,平均水深18 m[1].近些年富含氮、磷营养盐的工农业废水的大量排放使得渤海湾营养盐结构发生了很大变化,同时导致渤海湾局部海域“赤潮”频繁发生.营养物质进入水体后,将会在水与沉积物之间发生迁移,其中一部分可以与钙、铁或铝络合形成沉淀,或吸附到矿物颗粒的表面而转移到沉积物中.近海沉积物可以看作营养物质的“蓄积库”.沉积物中营养物质的再生,对水体中营养盐的收支和营养盐循环动力学有着及其重要的作用[2].  相似文献   
33.
Water column concentrations of total suspended solids (TSS), particulate organic carbon (POC) and particulate nitrogen (PN) were measured at three different depths in four different locations bracketing the estuarine turbidity maximum (ETM) along the main channel of a temperate riverine estuary (Winyah Bay, South Carolina, USA). Measurements were carried out over full tidal cycle (over 24 h). Salinity, temperature, current magnitude and direction were also monitored at the same time throughout the water column. Tidally averaged net fluxes of salt, TSS, POC and PN were calculated by combining the current measurements with the concentration data. Under the extreme low river discharge conditions that characterized the study period, net landward fluxes of salt were measured in the lower part of the study area, suggesting that the landward transport through the main channel of the estuary was probably balanced by export out through the sides. In contrast, the net fluxes of salt in the upper reaches of the study area were near zero, indicating a closed salt balance in this part of the estuary. In contrast to salt, the net fluxes of TSS, POC and PN in the deeper parts of the water column were consistently landward at all four sites in Winyah Bay indicating the non-conservative behavior of particulate components and their active transport up the estuary in the region around the ETM.The carbon contents (%POC), carbon:nitrogen ratios (org[C:N]a) and stable carbon isotopic compositions (δ13CPOC) of the suspended particles varied significantly with depth, location and tidal stage. Tidally averaged compositions showed a significant increase up the estuary in the %POC and org[C:N]a values of suspended particles consistent with the preferential landward transport of carbon-rich particles with higher vascular plant debris content. The combination of tidal resuspension and flood-dominated flow appeared to be responsible for the hydrodynamic sorting of particles along the estuary that resulted in denser, organic-poor particles being transported landward less efficiently. The elemental and isotopic compositions indicated that vascular C3 plants and estuarine algae were the major sources of the particulate organic matter of all the samples, without any significant contributions from salt marsh C4 vegetation (Spartina alterniflora) and/or marine phytoplankton.  相似文献   
34.
The Mondego estuary, a shallow warm-temperate intertidal system located on the west coast of Portugal, has for some decades been under severe ecological stress, mainly caused by eutrophication. Water circulation in this system was, until 1998, mainly dependent on tides and on the freshwater input of a small tributary artificially controlled by a sluice. After 1998, the sluice opening was effectively minimised to reduce the nutrient loading, and the system hydrodynamics improved due to engineering work in the upstream areas. The objective of the present study was to evaluate the effect of the mitigation measures implemented in 1998. Changes to the hydrodynamics of the system were assessed using precipitation and salinity data in relation to the concentrations of dissolved inorganic nutrients, as well as the linkage between dissolved N:P ratios and the biological parameters (phytoplankton chlorophyll a concentrations, green macroalgal biomass and seagrass biomass). Two distinctive periods were compared, over a ten year period: from January 1993 to January 1997 and from January 1999 until January 2003. The effective reduction in the dissolved N:P atomic ratio from 37.7 to 13.2 after 1998 is a result of lowered ammonia, but not the oxidised forms of nitrogen (nitrate plus nitrite), or increased concentrations of dissolved inorganic phosphorus. Results suggest that the phytoplankton is not nutrient limited, yet maximum and mean biomass of green macroalgae was reduced by one order of magnitude after the mitigation measures. This suggests that besides lowering the water residence time of the system, macroalgal growth became nitrogen limited. In parallel to these changes the seagrass-covered area and biomass of Zostera noltii showed signs of recovery.  相似文献   
35.
A nutrient dynamic model coupled with a 3D physical model has been developed to study the annual cycle of phytoplankton production in the Yellow Sea. The biological model involves interactions between inorganic nitrogen (nitrate and ammonium), phosphate and phytoplankton biomass. The model successfully reproduces the main features of phytoplankton-nutrient variation and dynamics of production. 1. The well-mixed coastal water is characterized by high primary production, as well as high new production. 2. In summer, the convergence of tidal front is an important hydrodynamic process, which contributes to high biomass at frontal areas. 3. The evolution of phytoplankton blooms and thermocline in the central region demonstrate that mixing is a dominant factor to the production in the Yellow Sea. In this simulation, nitrate- and ammonium-based productions are estimated regionally and temporally. The northern Yellow Sea is one of the highly ranked regions in the Yellow Sea for the capability of fixing carbon and nitrogen. The annual averaged f-ratio of 0.37 indicates that regenerated production prevails over the Yellow Sea. The result also shows that phosphate is the major nutrient, limiting phytoplankton growth throughout the year and it can be an indicator to predict the bloom magnitude. Finally, the relative roles of external nutrient sources have been evaluated, and benthic fluxes might play a significant role in compensating 54.6% of new nitrogen for new production consumption.  相似文献   
36.
The dynamics of benthic primary production and community respiration in a shallow oligotrophic, marine lagoon (Fællestrand, Denmark) was followed for 1·5 years. The shape of the annual primary production cycle was explained primarily by seasonal changes in temperature (r2 = 0·67-0·72) and daylength (r2 = 0·63), whereas temperature almost explained all variation in benthic community respiration (r2 = 0·83-0·87). On a daily basis the benthic system was autotrophic during spring and summer supplied by 'new' and 'regenerated' nitrogen and predominantly heterotrophic during fall and winter caused by light and nutrient limitation. The linear depth-relationship between porewater alkalinity and ammonium indicated that the C:N ratio of mineralized organic matter is low in spring and summer (3-6) and high in fall and winter (9-16). This is inversely related to net primary production and thus the input of labile, nitrogen-rich algal cells. Accordingly, mineralization occurred predominantly in the upper 2-5 cm of the sediment. The pool of reactive material (microalgal cells) was estimated to account for 12% of total organic carbon in the upper 3 cm, and had an average turnover time of less than 1 month in summer. Assimilation of organic carbon by benthic animals was equivalent to about 30% of the annual gross primary production. Grazing reduced chlorophyll a concentration in the sediment during summer and spring to values 30-40% lower than in winter, but maintained a 3-4 times higher specific microalgal productivity. The rapid turnover of organic carbon and nitrogen, and important role of benthic microalgae showed that the benthic community in this oligotrophic lagoon is of a very dynamic nature.  相似文献   
37.
wrmcrloxHuman activities related to the population growth and developrnent of industry and rnwhci-pality have led to the incrouing hadings of various POllutants into estudries during the past fewdecades. These increasing edlutant lOadings have caused declined estuallne hedth which can bemereured by a vdriety of indices. In order to obtain solutions to environrnent problerns, re-sources manageTnnt apencies are supporting a holistic approach to envirorirnental management.An effcient strategy t…  相似文献   
38.
梭鱼标准代谢、内源氮排泄与体重和温度的关系   总被引:5,自引:0,他引:5  
在 13.5 ,18,2 1.5 ,2 4和 2 7℃ 5个温度条件下测定了梭鱼 (体重范围 1.88~ 14.0 2 g)的标准代谢率和内源氮排泄率。梭鱼标准代谢率随体重的增加而增加 ,二者的关系为幂函数关系 ;随温度的升高而增加 ,二者的关系为指数关系 ;标准代谢率与体重和温度的关系可用如下方程表示 :RS=0 .12 4 6 W0 .9954 e0 .0 84 1T(r2 =0 .92 2 0 )。梭鱼的氨氮、尿素、总氮及能量的排泄率随体重和温度的增加而增加 ,与体重为幂函数关系 ,与温度的关系为多项式形式。梭鱼氨氮和尿素日排泄率的变幅分别为 0 .15~ 0 .88mg N/d和 0 .0 3~ 0 .2 9mg N/d。不同温度下 ,尿素排泄量占总氮比例在 9.9%~2 2 .4 9%之间 ,随温度升高该值有逐渐增大的趋势。  相似文献   
39.
日本沼虾黑鳃病几种同工酶的变化与病理分析   总被引:10,自引:0,他引:10  
酯酶(EST),过氧化物酶(POD),乳酸脱氢酶(LDH)和苹果酸脱氢酶(MDH)同工酶在日本沼虾中存在着组织和器官的特异性,患黑鳃病后酶带发生显著变化。在肌肉、肝脏、心脏和鳃中病虾较健康虾的LDH酶谱分别缺失了2、6、2和1条酶带,同时肝脏中新增了1条酶带;POD酶谱分别缺失了0、7、4和2酶带,肌肉中新增了2条酶带;EST酶谱分别缺失了0、2、3和1条酶带,肌肉、心脏和鳃中分别新增了1、2和2条酶带;MDH酶谱分别缺失了0、2、1和1条酶带,肌肉和脏脏中各新增了1条酶带。  相似文献   
40.
Porewater nutrient dynamics during emersion and immersion were investigated during different seasons in a eutrophic intertidal sandflat of Tokyo Bay, Japan, to elucidate the role of emersion and immersion in solute transport and microbial processes. The water content in the surface sediment did not change significantly following emersion, suggesting that advective solute transport caused by water table fluctuation was negligible. The rate of change in nitrate concentration in the top 10 mm of sediments ranged from −6.6 to 4.8 μmol N l−1 bulk sed. h−1 during the whole period of emersion. Steep nutrient concentration gradients in the surface sediment generated diffusive flux of nutrients directed downwards into deeper sediments, which greatly contributed to the observed rates of change in porewater nutrient concentration for several cases. Microbial nitrate reduction within the subsurface sediment appeared to be strongly supported by the downward diffusive flux of nitrate from the surface sediment. The stimulation of estimated nitrate production rate in the subsurface layer in proportion to the emersion time indicates that oxygenation due to emersion caused changes in the sediment redox environment and affected the nitrification and/or nitrate reduction rates. The nitrate and soluble reactive phosphorus pools in the top 10 mm of sediment decreased markedly during immersion (up to 68% for nitrate and up to 44% for soluble reactive phosphorus), however, this result could not be solely explained by molecular diffusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号