首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   17篇
  国内免费   27篇
地球物理   68篇
地质学   124篇
海洋学   8篇
综合类   1篇
自然地理   5篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   4篇
  2017年   8篇
  2016年   7篇
  2015年   4篇
  2014年   4篇
  2013年   5篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   9篇
  2007年   9篇
  2006年   5篇
  2005年   4篇
  2004年   14篇
  2003年   10篇
  2002年   18篇
  2001年   7篇
  2000年   12篇
  1999年   18篇
  1998年   10篇
  1997年   7篇
  1996年   10篇
  1995年   3篇
  1994年   6篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
排序方式: 共有206条查询结果,搜索用时 15 毫秒
1.
长江三角洲北翼J9孔揭示地层和古地磁特征   总被引:2,自引:0,他引:2       下载免费PDF全文
长江三角洲北翼地区缺少较长尺度的第四纪海陆变迁及环境演变的深入探讨,深达423m的海安县基岩标J9孔为此提供了较好的研究对象。通过观察该孔松散层岩心,总结其沉积特征,认为岩心可明显地划分为6个特征岩性段。同时,地层古地磁测试结果显示:0~200m为布容正极性世,200~334m为松山负极性世,334m以下为高斯正极性世。综合分析岩心沉积特征并参考古地磁测试结果对地层进行了初步划分,认为:0~39m为全新世地层,39~153m为晚更新世地层,153~200m为中更新世地层,200-334m为早更新世地层,之下为新近纪地层。地层中存在晚更新世晚期特征的硬粘土标志层,指示本地不是冰后期古河谷的发育地。  相似文献   
2.
对广东三水盆地上白垩统三水组、大 山组、古新统莘庄组及始新统 心组、宝月组的系统的古地磁研究结果表明:(1)旋转运动是该区构造运动的主要形式,顺时针旋转盆地拉张发育,这时针旋转盆地挤压衰亡,发育的程度与旋转角度有关;(2)始新世该区旋转方向由顺时针旋转变为道时针旋转,对应于太平洋-库拉板块对欧亚板块作用方向的改变,说明三水盆地的形成发育与太平洋-库拉板块对欧亚板块的作用密切相关;(3)三水盆地所在的华南地块从晚白垩世至始新世在纬向上不存在明显的运动,一直停留在略低于现今纬度的位置上。  相似文献   
3.
通过对山西保德-静乐地区新近纪地层的野外地质调查和实测剖面,对分布于该区的新近纪地层进行了详细的研究和划分,获得了新的ESR和古地磁测年数据,并结合生物地层序列确定了该区新近系地层的顺序为:新近系上新统静乐组(N2j)、新近系中新统上部保德组(N1^26)和中新统下部芦子沟组(N1^1l)。  相似文献   
4.
The analysis of paleomagnetic data available for the southern Primiorye region revealed that the studied objects were magnetized under regional remagnetization presumably during the Late Mesozoic folding and this magnetization can be interpreted as being synfolding. The interpretation is based on the parameter that characterizes the folding completion degree immediately before regional remagnetization. It is shown that the relaxation of Late Mesozoic horizontal stresses was irregular. The obtained estimates of the degree of folding completion are consistent with the available geological data and Talitskii’s model for tectonic deformations.  相似文献   
5.
The Caucasus is very important for our understanding of tectonic evolution of the Alpine belt, but only a few reliable paleomagnetic results were reported from this region so far. We studied a collection of more than 300 samples of middle Eocene volcanics and volcano-sedimentary rocks from 10 localities in the Adjaro–Trialet tectonic zone (ATZ) in the western part of the Caucasus. Stepwise thermal demagnetization isolates a characteristic remanent magnetization (ChRM) in 19 sites out of 31 studied. ChRM reversed directions prevail, and a few vectors of normal polarity are antipodal to the reversed ones after tilt correction. The fold test is positive too, and we consider the ChRM primary. Analysis of Tertiary declinations and strikes of Alpine folds in the Adjaro–Trialet zone and the Pontides in Northern Turkey shows a large data scatter; Late Cretaceous data from the same region, however, reveal good correlation between paleomagnetic and structural data. Combining Late Cretaceous and Tertiary data indicates oroclinal bending of the Alpine structures which are locally complicated with different deformation. The overall mean Tertiary inclination is slightly shallower than the reference Eurasian inclination recalculated from one apparent polar wander path (APWP), but agrees with other. This finding is in accord with geological evidence on moderate post-Eocene shortening across the Caucasus. We did not find any indication of long-lived paleomagnetic anomalies, such as to Cenozoic anomalously shallow inclinations further to the east in Central Asia.  相似文献   
6.
New paleomagnetic investigations on the Ethiopian trap series have been undertaken at the Abbay and Kessem gorges in an attempt to better constrain the 30 Ma paleomagnetic pole of Africa. We sampled six thick massive basaltic lava flows, totaling 230 m, from Abbay Gorge and 10 lava flows, 180 m in thickness, from Kessem Gorge. Detailed paleomagnetic analyses disclosed that the carriers of the characteristic remanent magnetization (ChRM) are different in different lava flows. These are mostly titanomagnetites, titanomaghemites, and magnetite minerals with a broad range of coercive force and blocking temperatures. The heating and cooling susceptibility vs. temperature curves, many of which are irreversible, may indicate chemical remagnetization, notably low temperature maghemitization. Only one flow (KS04) with a clear 580°C Curie temperature was apparently unaffected by chemical remagnetization. The ChRM direction of this flow is identical to that in other flows, which suggests that if and when remagnetization occurred, this was shortly after emplacement of the lava flows. All of the flows sampled have normal polarity. However, a reversed component of low to medium coercive force and low to medium unblocking temperature occurs in flow KS01 at Kessem Gorge. The ChRM directions for the 16 sites are D=3.1°, I=5.8° (α95=12.7°). The paleomagnetic pole obtained from these is at λ=83.0°N, φ=193.3°E (A95=9.0°). Comparison with three previous studies of the traps shows remarkable consistency and a number of means are derived and discussed. Two final preferred poles for the traps are at λ=79.0°N, φ=196.9°E (A95=2.8°) when all 112 published flows are used, and λ=78.7°N, φ=209.4°E (A95=3.4°) when only the 76 flows from the four more recently analyzed sections are included. Both are compatible with the recent reference synthetic pole for Africa of Courtillot and Besse [J. Geophys. Res. (2002) in press]. In that sense, the Ethiopian trap pole is not anomalous and does not require more of a non-dipolar contribution than indicated by analyses of the global paleomagnetic data base covering the last few million years.  相似文献   
7.
The Kerguelen Plateau, a Large Igneous Province in the southern Indian Ocean, was formed as a product of the Kerguelen hotspot in several eruptive phases during the last 120 Myr. We obtained new paleolatitudes for the central and northern Kerguelen Plateau from paleomagnetic investigations on basalts, which were drilled during ODP Leg 183 to the Kerguelen Plateau-Broken Ridge. The paleolatitudes coincide with paleolatitudes from previous investigations at the Kerguelen Plateau and Ninetyeast Ridge (the track of the Kerguelen hotspot) and indicate a difference between paleolatitudes and present position at 49°S of the Kerguelen hotspot. We show that true polar wander, the global motion between the mantle and the rotation axis, cannot explain this difference in latitudes. We present numerical model results of plume conduit motion in a large-scale mantle flow and the resulting surface hotspot motion. A large number of models all predict southward motion between 3° and 10° for the Kerguelen hotspot during the last 100 Myr, which is consistent with our paleomagnetic results.  相似文献   
8.
In metacarbonates of the Lesser (LH) and Tethyan (TH) Himalayas of Kumaon/Garhwal (N-India) characteristic remanent magnetisations carried by pyrrhotite (unblocking temperatures: 250-330°C) and magnetite (demagnetising spectra: 15-50 mT) have been identified. Negative fold tests indicate remanence acquisition after the main folding phase, which is of short-wavelength character and occurs during the early orogenese of the Himalayas. A thermal or thermochemical origin of magnetisation is likely and the age of remanence acquisition is indicated to be about 40 Ma by 40K/39Ar cooling and 40Ar/39Ar crystallisation ages. In the Kumaon LH a long-wavelength tilting is indicated by a distribution of the remanence directions along a small-circle in N-S direction. Steepening of the remanence directions in the TH related to ramping on the Main Central Thrust (MCT) was not observed, in contrast to other related studies. In the Alaknanda valley of LH a 38±8 Ma age of remanence acquisition is supported by comparison of observed inclinations to the apparent polar wander path of India. Clockwise rotation of 20.3±11.7° (LH/Alaknanda valley) and 11.3±8.5° (TH) with respect to the Indian plate is observed, indicating that there is no significant evidence for rotational shortening along the MCT since about 40 Ma. Our results suggest that most of rotational underthrusting and oroclinal bending has not been accommodated by the MCT, but by the main thrusts south of it. The latest Miocene/Pliocene age of the Main Boundary Thrust indicates that oroclinal bending is a late-orogenic process.  相似文献   
9.
Lower Cretaceous red sedimentary rocks from the depositional basin of East Qilian fold belt have been collected for a paleomagnetic study. Stepwise thermal demagnetization reveals two or three components of magnetization from dark red sandstones. Low-temperature magnetic component is consistent with the present Earth Field direction in geographic coordinates. High-temperature magnetic components are mainly carried by hematite. The mean pole of 19 sites for high-temperature magnetic components after tilt-correction is λ=62.2°N, φ=193.4°E, A95=3.2°, and it passes fold tests at 99% confidence level and reversal tests at 95% confidence level. The paleopole is insignificantly different from that of Halim et al. (1998) from the same sampling area at the 95% confidence level. Compared with paleomagnetic results for North China, South China, and Eurasia, our results suggest that no significant relative latitudinal displacement has taken place between Lanzhou region and these blocks since Cretaceous time. Remarkably, the pole of Lanzhou shows a 20° clockwise rotation with respect to those of North China, South China, and Eurasia. Geological information indicates that the crustal shortening in the western part of Qilian is greater than that in eastern part. In this case, the clockwise rotation of sampling area was related to India/Eurasia collision, and this collision resulted in a left-lateral strike-slip motion of the Altun fault in north Tibetan Plateau after the Cretaceous.  相似文献   
10.
Abstract This paper provides untilted paleomagnetic data obtained from the early Miocene strata around the Kanazawa‐Iozen area, in the eastern part of south‐west Japan. A thick pile of volcaniclastics and marine transgressive sediments underlie the area; they were deposited in the early stage of the Japan Sea opening event. Progressive thermal demagnetization tests isolated stable primary magnetic vectors from eight sites in the upper part of the Iozen Formation. Overall, the tilt‐corrected mean direction of this unit is D = 36.4°, I = 51.6° and α95 = 12.1. Together with a published paleomagnetic and chronological database, the present results suggest that clockwise rotation of south‐west Japan, linked to the back‐arc opening, commenced in the early Miocene and accelerated at the same time as rapid subsidence along the Japan Sea coast. Post‐opening, differential rotation within the eastern part of south‐west Japan is assumed, based on selected paleomagnetic data from the latest Early Miocene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号