首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   23篇
  国内免费   38篇
大气科学   102篇
海洋学   2篇
自然地理   2篇
  2023年   5篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   5篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   8篇
  2012年   6篇
  2011年   8篇
  2010年   5篇
  2009年   3篇
  2008年   4篇
  2007年   8篇
  2006年   8篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
排序方式: 共有106条查询结果,搜索用时 156 毫秒
101.
利用闪电定位仪每分钟实测资料、加密自动站逐分钟雨量和卫星云图云顶亮温TBB资料,对2013年4月29日西南涡东移过程中MCS产生的局地暴雨地闪特征进行了分析。结果表明:这次过程产生了大量地闪活动,且地闪主要出现在西南涡东侧500 hPa槽前辐合上升运动区、700 hPa暖切南侧850 hPa暖切北部的辐合带、TBB小于等于220 K区域南侧TBB水平梯度大值区的叠置区。整个过程负闪占主导地位,强降水发生在负闪密集区;MCS生命史不同阶段的正负闪频数、密集程度和分布位置是不同的。进一步分析发现单站地闪频数与TBB和强降水在时空变化上有一定的相关性,地闪频数和TBB表现为负相关,即TBB下降到最低值时,地闪频数则到达峰值;逐时地闪频数和雨强均呈单峰分布,负闪频数和强降水发展演变趋势一致,负闪峰值和最大雨峰时刻对应,正闪或和最大雨峰一致或略滞后,正负闪和雨峰的6 min演变趋势呈多峰分布,负闪初现12~18 min后出现降水,负闪突增较强降水有18~24 min的提前量。此个例显示MCS将朝向移动路径前侧的负闪密集区域移动,负闪密集区对局地强降水的落区和强度有较好的指示意义。  相似文献   
102.
Based on the infrared black body temperature (TBB) observed by the geostationary meteorological satellite FY-2E from 2010 to 2014, the seasonal migration, occurrence frequency, and intraseasonal variability of summer convection over the Tibetan Plateau (TP) and its surrounding areas are analyzed. The results show that in May, convection mainly occurs over the eastern edge of the TP;in June, following the onset of the Asian summer monsoon, the strongest (severe) convection occurs in the southeastern part of the TP;and in July-August, strong southwesterly winds transport abundant moisture to the eastern and central areas of the TP, leading to formation of an active convection belt over southeastern TP. The results also show that in the western TP, the area with convection frequency greater than 6% occupies the southern plateau around the 37th pentad, and gradually moves northward until the end of July;in the central plateau, convection (severe convection) becomes active since early (mid) June, and maintains through the entire late summer with three major northward movements until reaching 34°N;and in the eastern TP, the convection is relatively active since the beginning of May and its northward stretching is slightly later than that over the central plateau. Overall, summer convective activities are unevenly distributed over the TP, with frequency of convection decreasing from south to north;and they also exhibit considerable intraseasonal variability, the maximum of which is found over the middle reach of the Yarlung Zangbo River and the southeastern plateau. EOF analysis of summer convection frequency over the TP reveals two leading modes, with the first mode being a dipole variation pattern between the Indian monsoon region and the southeastern TP, and the second mode a tripole pattern over the western TP, the Indian continent west of 80°E, and the South Asian continent east of 80°E.  相似文献   
103.
利用吐哈盆地2011-2015年逐时FY-2E静止气象卫星红外云图资料,吐鲁番市1976-2015年5个国家气象站和2013-2015年26个区域气象站降水资料,采用卫星资料反演和统计分析方法,首次定义TK(地面气温与云顶亮温的差值)来规避地面辐射对卫星接收辐射的影响,分析吐鲁番盆地各级别TBB(-10~-20℃、-20~-30℃、-30~-40℃、-40~-50℃)云的分布状况及其与降水的关系、降水的时空分布特征和变化趋势。结果表明,吐鲁番盆地TBB各级别云覆盖度与海拔高度显著正相关,云量从盆地平原区向山区递增;TK的月变化同月降水具有较好的正相关性,TK正值时段4~8月与盆地汛期相对应,TK极大值对应月降水量最大的6月;降水与海拔高度显著正相关,降水先随海拔高度增加而增多,1 400~1 900 m区域是降水量和降水垂直变率最大的区域,之后降水随海拔高度增加而减少;降水高度集中在夏季与秋季,6月降水最多(占3~4成);降水集中出现在白天,平原地区集中在早晨至中午,山区集中在下午至傍晚。综合分析得出吐鲁番盆地人工增水作业区域、作业月份、作业"时间窗"选择的参考依据,其中最佳作业区域在1 400~1 900 m,最佳作业月份为6月,最佳作业"时间窗"为上午的06~10时与下午的14~18时。  相似文献   
104.
利用2017—2018年葵花卫星(Himawari)TBB亮温资料,计算最低亮温、亮温梯度、红外与水汽亮温差和低亮温区面积及其随时间变化率等特征参量,确定短时暴雨的卫星参数阈值,并融合了雷达参数阈值及过去1 h地面加密降水实况资料,采用指标叠加法判定监测区域内某一云团未来2 h能否产生区域性短时暴雨天气,并采用交叉相关法外推云团的移动,进而对强降水云团进行预警。对2019年几次暴雨过程预报检验结果是:预警命中率(POD)为80.6%~97.1%,平均为91.0%,临界成功指数(CSI)为77.2%~79.2%,平均为77.9%,所预警的云团未来2 h影响区域出现≥30 mm/h短时暴雨站数占全省短时暴雨站数的76.4%~96.2%,平均为85.2%,整体预警效果较好。  相似文献   
105.
利用地面观测、高空探测常规资料、NCEP 1°×1°再分析以及FY-2G红外云图资料,综合分析了2016年11月10—13日北疆北部的暖区暴雪过程成因,结果表明,此次暴雪天气是在“单阻型”经向环流和有利的高低空天气系统配置下发生的,主要表现为500 hPa东欧阻塞高压脊稳定,西西伯利亚低涡和冷槽东南下至北疆境外的中亚地区,200~500 hPa低涡和冷槽系统深厚且呈前倾结构,低涡底部极锋锋区加强并压至北疆上空,700~850 hPa北疆北部有暖平流和暖脊发展,地面气压场呈“两高夹一低”形势,北疆在地面冷锋前部和暖锋后部的暖区内。中高层西北急流、低层偏西气流和偏东气流三支气流在暴雪区上空汇合,暴雪区位于高空低涡底部西北急流、低层暖平流和切变线、地面暖低压南部的高低空重叠区域内。500 hPa以下仅有一条西方水汽输送路径,最强水汽输送在600~700 hPa,最强水汽辐合位于850 hPa附近,最大暴雪中心(裕民)的水汽输送强度更强、厚度更厚、时间更长,其平均云顶黑体亮温TBB值较富蕴偏高10℃左右。  相似文献   
106.
刘向科  康宁  张琴  刘畅 《气象科技》2023,51(1):14-21
为更好地发挥星地闪电探测资料在中尺度对流系统中的监测预警应用潜力,本文以2018年6月27日山东地区的一次中尺度对流系统为例,利用云顶温度、云顶降温率、雷达等资料与FY 4A闪电成像仪LMI(Lightning Mapping Imager)、ADTD(Advanced TOA and Direction system)闪电定位系统星地闪电探测资料,分析了星地闪电数据在中尺度对流系统中闪电分布特征及其与对流演变的关系,结果表明:星地探测闪电一致性较好,LMI相对位于对流云前方,星地闪电与降水区域吻合度较高。在系统发展初期,LMI超前于ADTD探测到闪电,且位于回波中心和前侧,回波垂直方向呈现出向前倾斜特征,这对于判识对流移动和演变趋势有较好的指示作用,在预报业务中可采用LMI的位置来辅助制作强对流落区预报。在成熟阶段,星地闪电频次出现跃增,正地闪比例较高,该时段山东多地发生冰雹灾害,LMI多出现在对流系统移动方向前方的弱回波或无回波区内,ADTD则更接近回波中心位置。合并阶段,部分LMI位于前方强回波区后部,与强回波区相对应。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号