首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   30篇
  国内免费   62篇
测绘学   1篇
大气科学   93篇
地球物理   4篇
地质学   7篇
海洋学   5篇
综合类   1篇
自然地理   13篇
  2023年   4篇
  2022年   2篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   10篇
  2015年   4篇
  2014年   5篇
  2013年   8篇
  2012年   6篇
  2011年   7篇
  2010年   8篇
  2009年   10篇
  2008年   6篇
  2007年   10篇
  2006年   8篇
  2005年   6篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
101.
近百年广州汛期降水变化特征及其影响因子   总被引:18,自引:12,他引:18  
利用1908~2000年广州市逐月降水资料、Hadisst海温资料和NCEP再分析资料,讨论了广州前汛期(4~6月)和后汛期(7~9月)降水的旱涝等级分布特征、长期变化趋势以及影响因子.结果表明,近百年来广州前汛期旱涝事件出现的连续性和间歇性比后汛期明显.前、后汛期降水分别经历4个偏湿时期、3个偏干时期和2个偏湿时期、2个偏干时期变化.前汛期年降水量呈上升趋势,后汛期年降水量呈下降趋势,但两者均没有达到0.1显著性检验标准,所以年降水量仍处在自然振动变化范围之内.机制分析表明,前期春季(3~5月)西太平洋暖池海温异常通过海气相互作用影响后期(4~6月)的大气环流,导致广州前汛期的降水异常.南海夏季风则通过与北半球500hPa位势高度场的遥相关来影响广州后汛期的降水异常.  相似文献   
102.
对流层准两年振荡最新研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
为了更好地了解对流层准两年振荡(Tropospheric Biennial Oscillation,TBO)的最新研究概况及目前存在的问题,基于国家自然科学基金项目关于TBO的专门研究和近年来国内外的TBO研究工作,对TBO研究的最新进展作了综述。最新研究指出,热带暖海区的海-气耦合过程可以维持TBO循环而无需热带东太平洋的参与,表明了TBO确实是独立于ENSO而存在的海-气耦合系统,但是对于TBO的本质问题还需要多方面的深入研究。  相似文献   
103.
利用季节循环的全球观测海表温度及海冰驱动NCARCam3全球大气环流模式的100a模拟结果,通过定义东亚夏季风指数,分析了模拟的大气内部变化中东亚夏季风的变化特征。结果表明:模拟的东亚夏季风自然变率主要表现为3—7a较显著的年际周期,并具有较明显的年代际变化特征。在弱夏季风年代,亚洲大陆海平面气压增强,日本附近及东亚沿海地区海平面气压降低;500hPa位势高度上,欧洲地区为负高度距平,里海附近地区为正高度距平,日本及其以东太平洋为负高度距平,易形成类似欧亚(EU)型的遥相关波列。在强夏季风年代,其环流异常分布基本与弱夏季风年代相反。模拟的东亚夏季风变化与夏季大气内部500hPa高度场上EU型遥相关波列的关系密切。  相似文献   
104.
The National Centers for Environmental Prediction (NCEP) reanalysis data, Climate Diagnostics Center Merged Analysis of Precipitation (CMAP) results, and NOAA Extended Reconstructed Sea Surface Temperature (SST), have been utilized in this paper to study the quasi-biennial variations in Asia-Pacific monsoon subsystems and associated SST anomalies (SSTA) and wind anomalies. Four monsoon indices are computed from NCEP/ National Center for Atmospheric Research (NCAR) reanalysis to represent the South Asian monsoon (SAM), South China Sea summer monsoon (SCSSM), Western North Pacific monsoon (WNPM) and East Asian monsoon (EAM), respectively. The quasi-biennial periods are very significant in Asia-Pacific monsoons (as discovered by power spectrum analysis), and for SAM and EAM---with moderate effects by El Ni?o-Southern Oscillation (ENSO)---the quasi-biennial periods are the most important factor. For SCSSM and WNPM (once again due to the effects of ENSO), the quasi-biennial periods are of secondary durations. There are obvious interdecadal variations in the quasi-biennial modes of the Asia-Pacific monsoon, so in the negative phase the biennial modes will not be significant or outstanding. The wind anomalies and SSTA associated with the biennial modes are very different in the SAM, WNPM and EAM regions. Since the WNPM and SCSSM are very similar in the biennial modes, they can be combined into one subsystem, called SCS/WNPM.  相似文献   
105.
简要回顾了东亚地区气候以及夏季风主要环流系统成员年代际变化的观测特征、数值模拟及其可能机理等方面的研究进展,并提出了东亚夏季风年代际变化数值模拟研究需进一步探讨的问题。  相似文献   
106.
In order to investigate the spatial patterns of the Tropospheric Biennial Oscillation (TBO) on the global scale, the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) monthly averaged precipitation and the Climate Diagnostics Center (CDC) monthly outgoing long-wave radiation (OLR) and SST are used in conjunction with TBO bandpass-filtering. The results indicate active biennial variability in the tropical eastern-central Pacific regions. It is evident that observations reflect the biennial component of the ENSO rather than the TBO itself. Since some studies have pointed out that the TBO is a broad-scale phenomenon differing from the ENSO, to investigate the pure TBO the ENSO signal must be excluded. The Scale Interaction Experiment-FRCGC (SINTEX-F) coupled general circulation model (CGCM) developed at Japan Frontier Research Center for Global Change (FRCGC) can capture both the ENSO and the biennial signals. Air-sea interactions in the tropical eastern-central Pacific are decoupled to eliminate the effects of ENSO in a experiment by SINTEX-F and the results show that biennial variability still exists even without ENSO. It seems to mean that the TBO and ENSO are independent from each other. Furthermore, the model results indicate that the two key regions are southwest Sumatra and the tropical western Pacific for the TBO cycle.  相似文献   
107.
利用影响南海夏季风年际变化的主要气候现象厄尔尼诺-南方涛动(El Ni?o-Southern Oscillation,ENSO)和对流层准两年振荡(Tropospheric Biennial Oscillation,TBO)相关的气候因子,提出了以过程判别函数确定物理过程的持续性,建立年际尺度的集成物理统计预测模型,而非年际尺度变率由经验统计模型预测,二者相结合,发展了集成物理-经验统计预测模型。经验模型在拟合时段的回报结果很好,但在独立样本预测时效果明显降低,其中预测评分(PS)降低了23%,距平相关系数(ACC)降低了63%;相比之下,集成物理-经验统计预测模型在独立样本预测时比经验模型有更好的预测结果(PS评分提高了9.5%,ACC提高了75%),且预测结果相对稳定。此外,集成物理-经验统计预测模型对南海夏季风降水的空间分布也有一定预测能力。  相似文献   
108.
热带西北太平洋10~30 d振荡对南海夏季风影响   总被引:1,自引:1,他引:0       下载免费PDF全文
采用1958—2011年NCEP/NCAR再分析资料以及ERSST海温资料,分析热带西太平洋夏季对流10~30 d振荡对南海夏季风的影响。在年际变化尺度上,热带西北太平洋夏季10~30 d振荡强度指数 (TWPI) 与南海夏季风强度有很好的正相关关系。在TWPI增强年份,海温主要呈El Ni?o分布,南海周边区域增强的异常西风产生强的正涡度切变,导致异常气旋性环流,为季风槽的增强提供了热量和水汽,从而增强南海夏季风强度。反之,在TWPI减弱年份,海温主要呈La Ni?a分布,南海夏季风强度减弱。在不同的年代际背景下,垂直切变和水汽-对流的总体变化是影响TWPI总体变化的重要因子,但不能影响南海夏季风强度的总体变化。海陆热力对比的总体变化是导致南海夏季风强度总体变化的主要影响因素。  相似文献   
109.
大气季节内振荡在华南降水预报中的应用   总被引:1,自引:0,他引:1  
大气季节内振荡(ISO)在天气气候演变中扮演着重要角色,是中期和延伸期预报可预报性来源之一,同时大气ISO的年际变化与区域季节降水量的年际变化密切联系,对短期气候预测有指示意义。对热带大气ISO的年际变化研究做了简要回顾;重点介绍了ISO对华南降水的影响及其业务应用情况,主要包括赤道MJO对华南降水的影响、基于准两周振荡的汛期暴雨过程预报、热带ISO与热带外系统多尺度相互作用对强降水的影响、ISO对季节降水的影响、基于ISO建立的降水延伸期定量预测模型;最后对进一步加强ISO应用研究提出了几点思考。  相似文献   
110.
The linear regression and horizontally stepwise correction are conducted on the observational data from AMSU-A L1 B of NOAA polar orbit satellite to invert a 40-layers(from 1,000 h Pa to 0.1 h Pa) dataset of atmospheric temperature with a horizontal resolution of 0.5°×0.5° after the correction of satellite antenna pattern and limb adjustment. Case study shows that the inversion data of temperature can reveal the detail structure of warm core in tropical cyclone. We choose two categories of tropical depressions(TDs) over the South China Sea, including the non-developing TDs and developing TDs. Both of them are developed downward from the middle and upper level to the lower level. Comparison between the evolutions of warm core in the two categories of TDs indicates that the warm core is developed downward from the middle and upper troposphere to the sea surface in all the downward-developing TDs. The difference is that in the group of further developing TDs, the warm core in the upper troposphere is intensified suddenly when it is extending to the sea surface. The warm core in the upper and lower troposphere is strengthened in a meantime. But the similar feature is not observed in the non-developing TDs. Then it may be helpful to judge the TD development by monitoring the change in its warm-core structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号