首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   7篇
  国内免费   1篇
大气科学   15篇
地球物理   32篇
地质学   43篇
海洋学   15篇
天文学   28篇
综合类   2篇
自然地理   11篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   4篇
  2018年   2篇
  2017年   7篇
  2016年   8篇
  2015年   3篇
  2014年   7篇
  2013年   8篇
  2012年   5篇
  2011年   19篇
  2010年   6篇
  2009年   4篇
  2008年   4篇
  2007年   7篇
  2006年   5篇
  2004年   6篇
  2003年   1篇
  2002年   7篇
  2001年   3篇
  1999年   5篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1988年   3篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1972年   2篇
  1971年   1篇
  1967年   2篇
  1964年   1篇
排序方式: 共有146条查询结果,搜索用时 234 毫秒
141.
We examined 14 subaerially deposited speleothems retrieved from submerged caves in the northeastern Yucatán Peninsula (Mexico). These speleothems grew during the Middle to Late Quaternary and were dated by 230Th-U techniques to provide upper depth limits for past sea levels. We report the first relative sea-level limits for Marine Isotope Stages (MIS) 11 and 6, and present new evidence for sea-level oscillations during MIS 5 and early MIS 1. For the latter periods, the origin of growth interruptions is evaluated by combining petrographic methods with trace element analyses. The MIS 5c sea-level highstand probably occurred between 103.94 ± 0.58 ka and 96.82 ± 0.42 ka and must have exceeded -10.8 m (relative to present-day local sea level). The minimum average rate of sea-level fall over a 9.4 ka-long period during the MIS 5e/5d transition is calculated from stalagmite and published coral data at 1.74 ± 0.37 m/ka. For the early Holocene, previous discrepancies with respect to a potential multimetre oscillation of local sea level were found to be challenging to reconcile with the existing speleothem data from the area.  相似文献   
142.
Our research addresses questions about how micro-climate affects activity abundance of a common and widespread harvestman in an alpine ecosystem. Activity patterns of the Harvestman Mitopus morio (Fabricius, 1779) were studied along different alpine gradients in the central Norwegian Scandes. Within a nested design, we surveyed 18 alpine habitats with pitfall traps and microclimatological equipment along oceanic-continental, two elevational, and (fine-scaled) microtopographic gradients. Sites in the oceanic region of the Scandes showed generally higher abundance of M. morio than sites in the continental region. Furthermore, along the elevational gradient, middle-alpine sites showed higher abundances than low-alpine sites. These general patterns are best explained by higher humidity in the oceanic region and in the middlealpine belt. Focusing at a finer scale, i.e. one elevational level within each region, revealed partly opposing activity patterns within relatively short distances. While in the western middle-alpine belt these patterns were best explained by humidityrelated measures but now with higher activity abundance during drier conditions, in the drier eastern middle-alpine belt heat sums rather than humidity were found to be the best explanatoryvariables for the observed patterns. Hence, our results imply a pronounced different reaction of the two populations towards climatic variables that partly even contradict the previously described general pattern. Regardless whether these differences in activity abundance in M. morio are a form of phenotypic plasticity or adaptation, our findings stress the importance of detailed autecological knowledge combined with fine-scaled climatic measurements when aiming at predictions about possible future ecosystem structures and spatiotemporal phenomena. M. morio proves to be an ideal biogeographic model organism for understanding spatio-temporal responses of alpine ecosystems under modified climatic conditions.  相似文献   
143.
Raman spectroscopy of carbonaceous material (RSCM) is frequently used to determine metamorphic peak temperatures from the structural order of carbonaceous material enclosed in metasediments. This method provides a quick, robust and relatively cheap geothermometer. However, the comparability of the RSCM parameter is low as there are at least three major sources of biasing factors. These sources are the spectral curve‐fitting procedure, the sample characteristics itself and the experimental design including the used Raman system. To assess the impacts of the biasing factors on RSCM, a series of experiments was performed. The experiments showed that curve‐fitting is strongly influenced by individual operator‐bias and the degrees of freedom in the model, implying the need for a standardised curve‐fitting procedure. Due to the diversity of components (optics, light detection device, gratings, etc.) and their combinations within the Raman systems, different Raman instruments generally give differing results. Consequently, to estimate comparable metamorphic temperatures from RSCM data, every Raman instrument needs its own calibration. This demands a reference material series that covers the entire temperature calibration range. Although sample heterogeneity will still induce some variation, a reference material series combined with standardised curve‐fitting procedures will significantly increase the overall comparability of RSCM data from different laboratories.  相似文献   
144.
Induction studies with satellite data   总被引:2,自引:0,他引:2  
The natural variations of the Earth's magnetic field of periods spanning from milliseconds to decades can be used to infer the conductivity-depth profile of the Earth's interior. Satellites provide a good spatial coverage of magnetic measurements, and forthcoming missions will probably allow for observations lasting several years, which helps to reduce the statistical error of the estimated response functions.Two methods are used to study the electrical conductivity of the Earth's mantle in the period range from hours to months. In the first, known as the potential method, a spherical harmonic analysis of the geomagnetic field is performed, and the Q-response, which is the transfer function between the internal (induced) and the external (inducing) expansion coefficients is determined for a specific frequency. In the second approach, known as the geomagnetic depth sounding method, the C-response, which is the transfer function between the magnetic vertical component and the horizontal derivative of the horizontal components, is determined. If one of these transfer functions is known for several frequencies, models of the electrical conductivity in the Earth's interior can be constructed.This paper reviews and discusses the possibilities for induction studies using high-precision magnetic measurements from low-altitude satellites. The different methods and various transfer functions are presented, with special emphasis on the differences in analysing data from ground stations and from satellites. The results of several induction studies with scalar satellite data (from the POGO satellites) and with vector data (from the Magsat mission) demonstrate the ability to probe the Earth's conductivity from space. However, compared to the results obtained with ground data the satellite results are much noisier, which presumably is due to the shorter time series of the satellite studies.The results of a new analysis of data from the Magsat satellite indicate higher resistivity in oceanic areas than in continental areas. However, since this holds for the whole range of periods between 2 and 20 days, this difference probably is not caused purely by differences in mantle conductivity (for which one would expect less difference for the longer periods). Further studies with data from recently launched and future satellites are needed.  相似文献   
145.
1INTRODUCTIONReservoirsedimentationisrecognizedasoneofthemainproblemsafectingtheeconomicsofmanywaterresourcesprojects.Manmad...  相似文献   
146.
To model currents in a fjord accurate tidal forcing is of extreme importance. Due to complex topography with narrow and shallow straits, the tides in the innermost parts of a fjord are both shifted in phase and altered in amplitude compared to the tides in the open water outside the fjord. Commonly, coastal tide information extracted from global or regional models is used on the boundary of the fjord model. Since tides vary over short distances in shallower waters close to the coast, the global and regional tidal forcings are usually too coarse to achieve sufficiently accurate tides in fjords. We present a straightforward method to remedy this problem by simply adjusting the tides to fit the observed tides at the entrance of the fjord. To evaluate the method, we present results from the Oslofjord, Norway. A model for the fjord is first run using raw tidal forcing on its open boundary. By comparing modelled and observed time series of water level at a tidal gauge station close to the open boundary of the model, a factor for the amplitude and a shift in phase are computed. The amplitude factor and the phase shift are then applied to produce adjusted tidal forcing at the open boundary. Next, we rerun the fjord model using the adjusted tidal forcing. The results from the two runs are then compared to independent observations inside the fjord in terms of amplitude and phases of the various tidal components, the total tidal water level, and the depth integrated tidal currents. The results show improvements in the modelled tides in both the outer, and more importantly, the inner parts of the fjord.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号