首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
  国内免费   2篇
测绘学   7篇
大气科学   4篇
地球物理   8篇
地质学   12篇
海洋学   1篇
天文学   1篇
自然地理   5篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2002年   1篇
  2001年   1篇
  1991年   1篇
  1983年   1篇
排序方式: 共有38条查询结果,搜索用时 281 毫秒
21.
22.
23.
This paper presents a new multiple linear regression(MLR) approach to updating the hourly, extrapolated precipitation forecasts generated by the INCA(Integrated Nowcasting through Comprehensive Analysis) system for the Eastern Alps.The generalized form of the model approximates the updated precipitation forecast as a linear response to combinations of predictors selected through a backward elimination algorithm from a pool of predictors. The predictors comprise the raw output of the extrapolated precipitation forecast, the latest radar observations, the convective analysis, and the precipitation analysis. For every MLR model, bias and distribution correction procedures are designed to further correct the systematic regression errors. Applications of the MLR models to a verification dataset containing two months of qualified samples,and to one-month gridded data, are performed and evaluated. Generally, MLR yields slight, but definite, improvements in the intensity accuracy of forecasts during the late evening to morning period, and significantly improves the forecasts for large thresholds. The structure–amplitude–location scores, used to evaluate the performance of the MLR approach,based on its simulation of morphological features, indicate that MLR typically reduces the overestimation of amplitudes and generates similar horizontal structures in precipitation patterns and slightly degraded location forecasts, when compared with the extrapolated nowcasting.  相似文献   
24.
We hypothesized that dissolved carbohydrates would be large components of the labile dissolved organic carbon (DOC) pool and would support much bacterial growth in Antarctic waters, especially the Ross Sea, since previous work had observed extensive phytoplankton blooms with potentially high production rates of carbohydrates in Antarctic seas. These hypotheses were tested on cruises in the Ross Sea and Antarctic Polar Front Zone as part of the US JGOFS program. Concentrations and fluxes of free glucose (the only free sugar detected) were very low, but dissolved polysaccharides appeared to be important components of the DOC pool. Concentrations of dissolved combined neutral sugars increased >3-fold during the phytoplankton bloom in the Ross Sea and were a large fraction (ca. 50%) of the semi-labile fraction of DOC. The relatively high concentrations of dissolved combined neutral sugars, which are thought to be quite labile, appear to explain why DOC accumulated during the phytoplankton bloom was degraded so quickly once the bloom ended. Some of the polysaccharides appeared to be more refractory, however, since dissolved combined neutral sugars were observed in deep waters (>550 m) and in early spring (October) in the Ross Sea, apparently having survived degradation for >8 months. The molecular composition of these refractory polysaccharides differed from that of polysaccharides sampled during the phytoplankton bloom. Fluxes of DOC were low in the Ross Sea compared to standing stocks and fluxes of particulate material, but the DOC that did accumulate during the phytoplankton bloom appeared to be sugar-rich and relatively labile.  相似文献   
25.
ABSTRACT

We present methodological advances to a recently developed framework to study sequential habitat use by animals using a visually-explicit and tree-based Sequence Analysis Method (SAM), derived from molecular biology and more recently used in time geography. Habitat use sequences are expressed as annotations obtained by intersecting GPS movement trajectories with environmental layers. Here, we develop IM-SAM, where we use the individual reference area of use as the reference spatial context. To assess IM-SAM’s applicability, we investigated the sequential use of open and closed habitats across multiple European roe deer populations ranging in landscapes with contrasting structure. Starting from simulated sequences based on a mechanistic movement model, we found that different sequential patterns of habitat use were distinguished as separate, robust clusters, with less variable cluster size when habitats were present in equal proportions within the individual reference area of use. Application on real roe deer sequences showed that our approach effectively captured variation in spatio-temporal patterns of sequential habitat use, and provided evidence for important behavioral processes, such as day-night habitat alternation. By characterizing sequential habitat use patterns of animals, we may better evaluate the temporal trade-offs in animal habitat use and how they are affected by changes in landscapes.  相似文献   
26.
Atmospheric circulation over the North Atlantic has undergone significant fluctuations during the Holocene. To better constrain these changes and their impacts on the Fennoscandian subarctic, we investigated molecular and inorganic proxies as well as plant wax D/H isotopes (δDC28) in a Holocene sedimentary record from Lake Torneträsk (Sweden). These data indicate a thermal maximum c. 8100 to 6300 cal. a BP with reduced soil organic matter input, followed by a long‐term cooling trend with increasing soil erosion. δD data suggest a stable atmospheric circulation with predominance of westerly flow and North Atlantic moisture sourcing during the Early and Middle Holocene. A substantial depletion in δD followed by increased flood frequency starting at c. 5300 cal. a BP and intensifying c. 1500 cal. a BP suggests a reorganization of the atmospheric circulation from zonal towards meridional flow with predominantly Arctic Ocean and Baltic Sea moisture sourcing.  相似文献   
27.
Knowledge of the glaciation of central East Iceland between 15 and 9 cal. ka BP is important for the understanding of the extent, retreat and dynamics of the Icelandic Ice Sheet. Crucially, it is not known if the key area of Fljótsdalur‐Úthérað carried a fast‐flowing ice stream during the Last Glacial Maximum; the timing and mode of deglaciation is unclear; and the history and ages of successive lake‐phases in the Lögurinn basin are uncertain. We use the distribution of glacial and fluvioglacial deposits and gradients of former lake shorelines to reconstruct the glaciation and deglaciation history, and to constrain glacio‐isostatic age modelling. We conclude that during the Last Glacial Maximum, Fljótsdalur‐Úthérað was covered by a fast‐flowing ice stream, and that the Lögurinn basin was deglaciated between 14.7 and 13.2 cal. ka BP at the earliest. The Fljótsdalur outlet glacier re‐advanced and reached a temporary maximum extent on two separate occasions, during the Younger Dryas and the Preboreal. In the Younger Dryas, about 12.1 cal. ka BP, the outlet glacier reached the Tjarnarland terminal zone, and filled the Lögurinn basin. During deglaciation, a proglacial lake formed in the Lögurinn basin. Through time, gradients of ice‐lake shorelines increased as a result of continuous but non‐uniform glacio‐isostatic uplift as the Fljótsdalur outlet glacier retreated across the Valþjófsstaður terminal zone. Changes in shoreline gradients are defined as a function of time, expressed with an exponential equation that is used to model ages of individual shorelines. A glaciolacustrine phase of Lake Lögurinn existed between 12.1 and 9.1 cal. ka BP; as the ice retreated from the basin catchment, a wholly lacustrine phase of Lake Lögurinn commenced and lasted until about 4.2 cal. ka BP when neoglacial ice expansion started the current glaciolacustrine phase of the lake.  相似文献   
28.
29.
The Global Geodetic Observing System requirement for the long-term stability of the International Terrestrial Reference Frame is 0.1 mm/year, motivated by rigorous sea level studies. Furthermore, high-quality station velocities are of great importance for the prediction of future station coordinates, which are fundamental for several geodetic applications. In this study, we investigate the performance of predictions from very long baseline interferometry (VLBI) terrestrial reference frames (TRFs) based on Kalman filtering. The predictions are computed by extrapolating the deterministic part of the coordinate model. As observational data, we used over 4000 VLBI sessions between 1980 and the middle of 2016. In order to study the predictions, we computed VLBI TRF solutions only from the data until the end of 2013. The period of 2014 until 2016.5 was used to validate the predictions of the TRF solutions against the measured VLBI station coordinates. To assess the quality, we computed average WRMS values from the coordinate differences as well as from estimated Helmert transformation parameters, in particular, the scale. We found that the results significantly depend on the level of process noise used in the filter. While larger values of process noise allow the TRF station coordinates to more closely follow the input data (decrease in WRMS of about 45%), the TRF predictions exhibit larger deviations from the VLBI station coordinates after 2014 (WRMS increase of about 15%). On the other hand, lower levels of process noise improve the predictions, making them more similar to those of solutions without process noise. Furthermore, our investigations show that additionally estimating annual signals in the coordinates does not significantly impact the results. Finally, we computed TRF solutions mimicking a potential real-time TRF and found significant improvements over the other investigated solutions, all of which rely on extrapolating the coordinate model for their predictions, with WRMS reductions of almost 50%.  相似文献   
30.
Earth orientation parameters estimated from VLBI during the CONT11 campaign   总被引:1,自引:1,他引:0  
In this paper we investigate the accuracy of the earth orientation parameters (EOP) estimated from the continuous VLBI campaign CONT11. We first estimated EOP with daily resolution and compared these to EOP estimated from GNSS data. We find that the WRMS differences are about 31  $\upmu $ as for polar motion and 7  $\upmu $ s for length of day. This is about the precision we could expect, based on Monte Carlo simulations and the results of the previous CONT campaigns. We also estimated EOP with hourly resolution to study the sub-diurnal variations. The results confirm the results of previous studies, showing that the current IERS model for high-frequency EOP variations does not explain all the sub-diurnal variations seen in the estimated time series. We then compared our results to various empirical high-frequency EOP models. However, we did not find that any of these gave any unambiguous improvement. Several simulations testing the impact of various aspects of, e.g. the observing network were also made. For example, we made simulations assuming that all CONT11 stations were equipped with fast VLBI2010 antennas. We found that the WRMS error decreased by about a factor five compared to the current VLBI system. Furthermore, the simulations showed that it is very important to have a homogenous global distribution of the stations for achieving the highest precision for the EOP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号