首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   2篇
大气科学   4篇
地球物理   8篇
地质学   19篇
海洋学   2篇
天文学   7篇
自然地理   4篇
  2023年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   6篇
  2007年   3篇
  2005年   2篇
  2004年   1篇
  2001年   2篇
  2000年   2篇
  1996年   1篇
  1993年   1篇
  1991年   1篇
  1987年   2篇
  1985年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1954年   1篇
  1948年   1篇
排序方式: 共有44条查询结果,搜索用时 515 毫秒
21.
Le Merle  Eva  Hauser  Danièle  Tison  Céline 《Ocean Dynamics》2019,69(6):679-699
Ocean Dynamics - In situ observations, satellite observations, and regional observations from airborne remote sensing are very useful to characterize sea state evolution and related physical...  相似文献   
22.
Summary. COCORP seismic reflection traverses of the U.S. Cordillera at 40°N and 48.5°N latitude reveal some fundamental similarities as well as significant differences in reflection patterns. On both traverses, autochthonous crust beneath thin-skinned thrust belts of the eastern part of the Cordillera is unreflective; immediately to the west the Cordilleran interior is very reflective above a flat, prominent reflection Moho. Mesozoic accreted terranes in the western part of the orogen are underlain on both traverses by very complex reflection patterns, in constrast to more easily deciphered patterns beneath areas of Cenozoic accretion. The prominent reflection Moho beneath the orogenic interior on both transects probably evolved through a combination of magmatic and deformational processes during Cenozoic extension. The main differences between the two traverses lie in the reflection patterns of the middle and lower crust in the Cordilleran interior; these differences are probably related to the way Cenozoic extension was accommodated at depth. Laminated middle and lower crust above the reflection Moho in the western Basin and Range (40°N) may be related to magmatism, ductile pure shear and large-scale transposition during Cenozoic extension. By contrast, beneath the eastern Basin and Range (40°N), and the orogenic interior in the NW United States (48.5°N), Cenozoic extension was probably accommodated along dipping deformation zones throughout the crust.  相似文献   
23.
New combined U–Pb and Lu–Hf isotope analyses on zircon from three turbidite deposits, and petrologic data for associated igneous rocks were used to study the evolution of the Paleozoic basement of Eastern Cordillera, NW Argentina. Maximum and minimum ages for turbidite deposits, considered to be part of the Puncoviscana Fm., are reported. In the Tastil area, turbidites were deposited in a fore-arc setting after 560 Ma and intruded at 534 Ma by the Tastil batholith. In the El Niño Muerto Hill area turbidites with maximum depositional age of 496 ± 11 Ma were intruded by high-K dacites at 483 ± 3 Ma. In the Río Blanco Valley, the turbiditic/hemipelagitic sediments, with maximum depositional age of 463 ± 11 Ma were contemporaneous with E-MORB/OIB volcanism. The U–Pb and Lu–Hf data permitted to distinguish two major periods of magmatic activity during Late Mesoproterozoic–Early Neoproterozoic (0.95 to 1.2 Ga) and Late Neoproterozoic–Early Paleozoic (0.75 to 0.46 Ga) times, the former dominated by the input of juvenile crust and the latter by arc magmatism and recycling of Meso- to Paleoproterozoic crust. On the basis of new data we suggest that western margin of Gondwana was controlled by subduction processes and accretion of small terrains during Neoproterozoic–Early Paleozoic times.  相似文献   
24.
Genesis and emplacement of Vredefort Granophyre, the impact melt rock exposed on the Vredefort Dome, the erosional remnant of the central uplift of the Vredefort impact structure, South Africa, have long been debated. This debate was recently reinvigorated by the discovery that besides the previously known felsic variety of >66 wt% SiO2, a second, somewhat more mafic phase of <66 wt% SiO2 occurs along a Granophyre dike on farms Kopjeskraal and Eldorado in the northwest sector of the dome. Two hypotheses have been put forward to explain the genesis and emplacement of this second phase: (1) successive injections of impact melt into extensional fractures opened in the course of central uplift formation/crater modification, with melts of distinct compositions derived from a differentiating impact melt body in the crater, and (2) generation of the more mafic phase as a product of admixture/assimilation of a mafic country rock component, either the so-called epidiorite of possible Ventersdorp Supergroup affiliation or the Dominion Group meta-lava (DGL), to Felsic Granophyre. In the latter model, contamination with mafic country rock would have occurred during downward intrusion and stoping into and below the crater floor. The so-called Mafic Granophyre has previously only ever been sampled on a single site (Farm Kopjeskraal). In this study, samples of Granophyre occurring along the southerly extension of this dike on farm Rensburgdrif, and from a second dike on the Rietkuil property further southwest were investigated by field work, and petrographic, geochemical, and isotopic analysis. The mafic phase indeed occurs in the interior of the dike at Rensburgdrif, and also on Rietkuil. New geochemical and Sr-Nd isotope data support the hypothesis that the Mafic Granophyre composition represents a mixture between Felsic Granophyre and a mafic country rock. A 20% admixture of epidiorite or DGL to Felsic Granophyre provides an excellent match for the chemical composition of the Mafic Granophyre. The Sr-Nd isotope data indicate that this admixture likely involved the epidiorite component rather than DGL. Together with earlier Sr-Nd-Os-Se isotopic data, and other geochemical data, these results further support formation of the Mafic Granophyre by local assimilation/admixture of epidiorite to Felsic Granophyre.  相似文献   
25.
We demonstrate and validate a Bayesian approach to model calibration applicable to computationally expensive General Circulation Models (GCMs) that includes a posterior estimate of the intrinsic structural error of the model. Bayesian artificial neural networks (BANNs) are trained with output from a GCM and used as emulators of the full model to allow a computationally efficient Markov Chain Monte Carlo (MCMC) sampling of the posterior for the GCM parameters calibrated against seasonal climatologies of temperature, pressure, and humidity. We validate the methodology by calibrating to targets produced by a model run with added noise. We then demonstrate a calibration of five GCM parameters against an observational data set. The approach accounts for both parametric and structural uncertainties of the model as well as uncertainties associated with the observational calibration data. This enables the generation of statistically rigorous probabilistic forecasts for future climate states. All calibration experiments are performed with emulators trained using a maximum of one hundred model runs, in accord with typical resource restrictions imposed by computationally expensive models. We conclude by summarizing remaining issues to address in order to create a complete and validated operational methodology for objective calibration of computationally expensive models.  相似文献   
26.
The purpose of this study is to show the results of the Italian research project of national interest (PRIN) launched in 2006 and finished in 2008, concerning the “assessment of groundwater contamination risk by nitrates assessment”. The project verified the IPNOA method for nitrate groundwater contamination risk assessment in four test-sites of Italy. The IPNOA is a parametric index which assesses the potential hazard of nitrate contamination originating from agriculture on a regional scale. The method integrates two categories of parameters: the hazard factors (HF), which represent all farming activities that cause, or might cause, an impact on soil quality in terms of nitrate (use of fertilisers, application of livestock and poultry manure, food industry wastewater and urban sludge), and the control factors (CF) which adapt the hazard factors to the characteristics of the site (geographical location, climatic conditions and agronomic practices). Finally, the Potential Risk Map is obtained by coupling the potential hazard of nitrate pollution (IPNOA) and the aquifer Contamination Vulnerability Map. The project was carried out by five Research Units (RU) from the Politecnico di Torino, Universities of Piacenza, Florence, Naples and Palermo. The geochemistry of groundwaters from the four test-sites was studied to determine the distribution of nitrate, and to evaluate groundwater chemical facies. All the study areas are affected by groundwater nitrate contamination and often by hydrogeochemical peculiarities. In some cases isotopic study, δ18O–NO3δ15N–NO3, allowed to differentiate nitrates of chemical fertilisers from those of biological origin, as well as denitrification processes.  相似文献   
27.
At present the concentrations of polycyclic aromatic hydrocarbons in sediments from the Great Barrier Reef are remarkably low. The baseline levels range from <0.01 μg kg?1 dry wt. for benzo(k)fluoranthene and benzo(a)pyrene to <0.82 μg kg?1 for chrysene. Measurable levels of polycyclic aromatic hydrocarbons have only been found in small areas close to sites frequently visited by power boats. Sediments from Townsville and Gladstone Harbours on the coast adjacent to the reef are polluted with polycyclic aromatic hydrocarbons to a similar degree to that reported for coastal sediments in similar locations in other parts of the world.  相似文献   
28.
In order to study the lithospheric structure in Romania a 450 km long WNW–ESE trending seismic refraction project was carried out in August/September 2001. It runs from the Transylvanian Basin across the East Carpathian Orogen and the Vrancea seismic region to the foreland areas with the very deep Neogene Focsani Basin and the North Dobrogea Orogen on the Black Sea. A total of ten shots with charge sizes 300–1500 kg were recorded by over 700 geophones. The data quality of the experiment was variable, depending primarily on charge size but also on local geological conditions. The data interpretation indicates a multi-layered structure with variable thicknesses and velocities. The sedimentary stack comprises up to 7 layers with seismic velocities of 2.0–5.9 km/s. It reaches a maximum thickness of about 22 km within the Focsani Basin area. The sedimentary succession is composed of (1) the Carpathian nappe pile, (2) the post-collisional Neogene Transylvanian Basin, which covers the local Late Cretaceous to Paleogene Tarnava Basin, (3) the Neogene Focsani Basin in the foredeep area, which covers autochthonous Mesozoic and Palaeozoic sedimentary rocks as well as a probably Permo-Triassic graben structure of the Moesian Platform, and (4) the Palaeozoic and Mesozoic rocks of the North Dobrogea Orogen. The underlying crystalline crust shows considerable thickness variations in total as well as in its individual subdivisions, which correlate well with the Tisza-Dacia, Moesian and North Dobrogea crustal blocks. The lateral velocity structure of these blocks along the seismic line remains constant with about 6.0 km/s along the basement top and 7.0 km/s above the Moho. The Tisza-Dacia block is about 33 to 37 km thick and shows low velocity zones in its uppermost 15 km, which are presumably due to basement thrusts imbricated with sedimentary successions related to the Carpathian Orogen. The crystalline crust of Moesia does not exceed 25 km and is covered by up to 22 km of sedimentary rocks. The North Dobrogea crust reaches a thickness of about 44 km and is probably composed of thick Eastern European crust overthrusted by a thin 1–2 km thick wedge of the North Dobrogea Orogen.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号