首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   3篇
  国内免费   26篇
大气科学   28篇
地球物理   1篇
  2020年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   8篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  1999年   2篇
  1998年   1篇
排序方式: 共有29条查询结果,搜索用时 218 毫秒
21.
造成北京PM10重污染的二类典型天气形势   总被引:11,自引:5,他引:6  
利用北京空气质量监测资料和NCEP再分析资料,分析了北京发生PM10重污染的天气形势。研究表明:1)虽然北京地区PM10重污染(API指数3级以上)每年只有10 d左右,但与之关联的轻微或轻度空气污染(API指数3级)天数,却可能占全年3级污染总天数的40%-50%。因此,分析研究造成北京PM10重污染的天气形势,对于空气污染的预警预报以及污染源的控制和管理,都具有十分重要意义。2)通过海平面气压场的主观分析,确定了二类北京PM10重污染的典型天气形势,即高压南下东移阻滞型和与北上台风(或热带低压)相关联的弱高压控制型,并指出了后者在2008年奥运会期间,对开展北京空气污染预报和污染控制的指导作用。  相似文献   
22.
城市化进程对北京地区冬季降水分布的影响   总被引:8,自引:0,他引:8  
根据北京地区城市化程度将城市化进程分成两个时期: 即以1980年为分界点, 将1961~1980年划分为城市化慢速期, 1981~2000年为城市化快速期. 利用北京地区14个标准气象站40 a的降水量资料. 研究了城市化进程对北京地区降水分布的影响. 结果表明: 北京地区冬季降水分布发生了显著的、系统性的变化; 城市化缓慢期, 北京地区南部为降水相对较多地区, 北部为降水相对偏少地区; 城市化快速期, 相对降水量的分布正相反, 南部地区变为降水相对较少地区, 而北部变为降水相对偏多地区. 随着城市规模的扩大, 北京冬季“城市热岛”和“城市干岛”效应增强, 加速了云下降水物的蒸发过程, 使城区及南部地区的降水相对减少. 这可能是造成北京冬季降水分布变化的重要原因之一.  相似文献   
23.
秋季在北京城郊草地下垫面上的一次臭氧干沉降观测试验   总被引:3,自引:0,他引:3  
2007年9月23日至10月13日, 在北京昌平区蟒山森林公园内, 利用浓度梯度观测法研究了秋季草地下垫面上臭氧的干沉降特征。研究结果表明: (1) 整个观测期间, 臭氧干沉降通量和干沉降速率平均值分别为-0.40 μg?m-2?s-1(负号表示方向指向地面) 和0.55 cm/s。 (2) 臭氧干沉降通量和干沉降速率受观测点山谷风的影响, 当白天谷风主导时, 臭氧的干沉降通量最大, 其平均值为-0.67 μg?m-2?s-1; 在山风、 谷风转换期间, 其平均值为-0.44 μg?m-2?s-1; 夜间山风主导时最小, 为-0.26 μg?m-2?s-1。臭氧干沉降速率也呈现同样的变化规律, 三种情形下的平均沉降速率分别为0.74 cm/s、 0.50 cm/s和0.47 cm/s。 (3) 利用阻力模型计算了臭氧的植被冠层阻力 (Rc), 结果表明: 由于白天植被的光合作用, 叶面气孔打开, 冠层阻力相对较小, Rc 的平均值为109.0 s/m; 夜间植被叶面气孔关闭, 阻力有明显升高, Rc的平均值为217.7 s/m; 在整个观测期间, Rc的平均值为184.0 s/m。  相似文献   
24.
利用2007和2008年北京地区空气质量监测资料和NCEP再分析资料,分析了北京地区空气动力学当量直径小于等于10μm颗粒物(PM10)污染过程与天气形势及天气系统之间的关系。结果表明:西太平洋热带气旋路径对北京地区发生PM10污染具有预示作用,即当热带气旋北上并在朝鲜半岛或日本登陆的情况下,北京地区一般受持续均压场等弱中尺度天气系统控制,这种中尺度天气系统不利于污染物的扩散,因此北京地区经常发生区域性的PM10空气污染事件。在2007年9次台风北上登陆朝鲜半岛或日本的过程中,北京地区伴随发生了9次PM10污染过程,预示准确率达100%,2008年的预示准确率也达到了80%以上。为了说明北京奥运会期间污染控制措施对改善北京空气质量有实际效果,利用中国科学院大气物理研究所区域空气质量模式NAQPMS,采用无控制措施源和有控制措施源,对2008年北京残奥会期间一次西太平洋北上型热带气旋天气条件下的空气质量状况进行了数值模拟试验,揭示了此次过程北京地区未发生PM10空气污染的原因。  相似文献   
25.
湿地小气候效应特征研究   总被引:1,自引:0,他引:1  
湿地对局地小气候具有调节作用,研究湿地小气候效应特征能更具体地了解湿地对局地小气候的影响。本文以河北省衡水市的衡水湖为例,利用衡水市11个常规气象观测站数据,通过对湖区及湖区外各季节不同气象要素的对比,对衡水湖各个季节的小气候效应进行了分析。结果表明:(1)衡水湖具有冷岛效应、湿岛效应和风岛效应,能够调节周围的气候特征;(2)衡水湖的小气候效应具有季节特征,衡水湖各季节平均的冷岛效应由强到弱依次为春季、冬季、秋季、夏季,湿岛效应由强到弱分别为夏季、春季、秋季、冬季,风岛效应由强到弱依次为春季、夏季、冬季、秋季,春季小气候效应最强;(3)衡水湖的小气候效应具有昼夜特征,夜晚的冷岛效应强于白天,湿岛和风岛效应正相反,白天的强度大于夜晚。  相似文献   
26.
人为热排放的引入对北京地区精细模拟的改进   总被引:1,自引:0,他引:1  
将人为热排放纳入到已耦合城市模块Urban Canopy Model(UCM)的中尺度气象模式Weather Research and Forecasting(WRF)中,探讨了人为热排放对于北京地区精细化模拟的重要意义,其影响主要体现在以下几个方面:1)可有效改善气象要素的模拟效果,特别是对于大气边界层高度的显著性改善,该变量是控制空气质量模式中污染物垂直扩散的关键因子;2)可较好地再现城区流场及温度场,使热岛强度和中心配置更接近实况;3)可明显改善数值模式对于污染物垂直分布特征的模拟。  相似文献   
27.
城市冠层内风场的准确模拟或预报是突发性大气污染应急响应措施制定和实施的重要前提和基础。为了合理反映城市冠层的影响, 并满足应急响应时效性的要求, 将MacDonald(2000)提出的城市冠层内风廓线参数化方法耦合于中尺度气象模式MM5, 并利用2010年7月18日至8月6日北京325 m气象塔垂直观测资料进行验证。试验结果表明:(1)城市冠层参数化方法能够较好的模拟各种稳定度条件下冠层内风速廓线垂直变化, 中性、稳定和不稳定层结时的标准平均偏差分别为78%、12%、4%, 标准平均误差分别为78%、52%、21%。(2)城市冠层参数化方法能够较好的模拟冠层内实际风速变化情况, 虽然随高度增加模拟偏差增大, 但8、15、32、47 m高度的模拟风速与观测值依然十分接近, 标准平均偏差分别为2%、-26%、25%、60%, 标准平均误差分别为54%、46%、52%、73%。(3)与传统的Monin-Obukhov相似性边界层参数化方法相比, 城市冠层参数化方法明显提高了冠层风速的模拟能力。中性、稳定、不稳定层结时, Monin-Obukhov相似性边界层参数化方法的标准平均误差高达420%、176%、184%, 城市冠层参数化方法的标准平均误差减小至78%、52%、21%;冠层内8、15、32、47 m高度, Monin-Obukhov相似性边界层参数化方法的标准平均误差分别为283%、184%、227%、167%, 城市冠层参数化方法的标准平均误差减小至54%、46%、52%、73%。  相似文献   
28.
区域性光化学模式与LLA-C机制的模拟性能比较   总被引:1,自引:0,他引:1       下载免费PDF全文
以 L L A- C 机制为基准,在[ N M H C]/[ N O# - x] 比率分别为179 、714 、286 条件下测试了区域性光化学模式( R O S) 的模拟性能。结果表明 R O S 模式在上述三种初值条件下均能从总体趋势上给出与 L L A - C 机制相似的结果, 但只有当非甲烷烃浓度较高([ N M H C]/[ N Ox] > 12) 时 R O S 模式模拟值与 L L A- C 机制预测值比较接近。在这种条件下, R O S 模型对 O H 的预测值有待改进。我国大气中相当高的[ N M H C]/[ N Ox] 比率说明 R O S 模式用于全国范围内的空气质量趋势模拟是可行的。  相似文献   
29.
区域性光化学模式与LLA-C机制的模拟性能比较   总被引:1,自引:1,他引:0  
以LLA-C机制为基准,在[NOx]比率分别为1.79、7.14、28.6条件下测试了区域性光化学模式(ROS)的模拟性能。结果表明ROS模式在上述三种初值条件下均能从总体趋势上给出与LLA-C机制相似的结果,但只有当非甲烷烃浓度较高([NMHC]/[NOx]>12)时ROS模式模拟值与LLA-C机制预测值比较接近。在这种条件下,ROS模型对OH的预测值有待改进。我国大气中相当高的[NMHC]/[NOx]比率说明ROS模式用于全国范围内的空气质量趋势模拟是可行的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号