首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1113篇
  免费   323篇
  国内免费   394篇
测绘学   50篇
大气科学   849篇
地球物理   178篇
地质学   222篇
海洋学   32篇
天文学   7篇
综合类   46篇
自然地理   446篇
  2024年   6篇
  2023年   20篇
  2022年   45篇
  2021年   54篇
  2020年   68篇
  2019年   78篇
  2018年   48篇
  2017年   52篇
  2016年   50篇
  2015年   67篇
  2014年   105篇
  2013年   143篇
  2012年   108篇
  2011年   104篇
  2010年   70篇
  2009年   63篇
  2008年   65篇
  2007年   84篇
  2006年   67篇
  2005年   61篇
  2004年   69篇
  2003年   72篇
  2002年   44篇
  2001年   44篇
  2000年   49篇
  1999年   40篇
  1998年   35篇
  1997年   21篇
  1996年   30篇
  1995年   13篇
  1994年   12篇
  1993年   18篇
  1992年   12篇
  1991年   8篇
  1990年   2篇
  1988年   2篇
  1985年   1篇
排序方式: 共有1830条查询结果,搜索用时 125 毫秒
31.
分析2009~2010年隆林秋冬春连旱的直接原因和深层次原因,并利用降水距平百分率和相对湿润度指数对气象干旱等级进行评估,为政府和有关部门抗旱救灾和灾害评估提供参考。  相似文献   
32.
不同卫星遥感干旱指数在黑龙江的对比应用   总被引:3,自引:0,他引:3       下载免费PDF全文
采用MODIS的1 km×1 km分辨率数据,以我国黑龙江为研究区,对基于植被指数的植被状态指数 (IVC)、基于地表温度的温度状态指数 (ITC) 和基于植被指数-地表温度特征空间的植被温度状态指数 (IVTC) 与10 cm,20 cm土壤相对湿度、降水量的关系、3种指数监测结果及其相互关系进行了对比分析。结果表明:IVTC相对于ITC,IVC更适于反映土壤湿度的变化,对浅层土壤湿度更加敏感;IVTC相对于ITC,IVC对降水更敏感,与监测时段的降水和前期总体降水都密切相关;在生长季早期,IVTC和ITC用于干旱监测的适用性明显优于IVC;不同区域间,IVTC的可比性较好,IVC和ITC则较差;IVTC所反映的地表温度信息对干旱的直接指示作用最强,所反映的植被信息对干旱的直接指示作用较弱。  相似文献   
33.
利用1964—2008年辽宁51站降水量资料,采用Z指数和区域旱涝HL指数分析了全区近45a旱涝变化。结果表明:近45a辽西、辽北以及辽东南地区单站旱涝发生频率均明显高于辽中、辽东地区;区域性洪涝指数逐渐减小,区域性干旱指数逐步增大。对辽宁51站Z指数进行了EOF和REOF分析,可知辽宁旱涝的空间分布特征除受大尺度天气系统所带来的降水量变化影响外,同时还受地理位置、海陆分布等多种因子影响。通过REOF方法可将全区分为4个区域,即Ⅰ辽西地区,Ⅱ辽北、辽西北地区,Ⅲ辽中、辽东地区和Ⅳ辽东南地区。  相似文献   
34.
刘一  黄威 《气象》2011,37(5):639-644
2011年2月环流特征如下:北半球高纬度地区为单一极涡,中心偏向西半球,强度较常年同期偏强,欧亚中高纬呈现4波型,副高强度偏弱,南支槽活动偏弱.2月,全国平均降水量为11.4 mm,比常年同期偏少4.9 mm.上、中旬,我国北方地区处于高压脊控制,华北、黄淮气象干旱持续发展,月底,随着环流形势的调整,上述地区干旱得到有...  相似文献   
35.
In the last decades, human activity has been contributing to climate change that is closely associated with an increase in temperatures, increase in evaporation, intensification of extreme dry and wet rainfall events, and widespread melting of snow and ice. Understanding the intricate linkage between climate warming and the hydrological cycle is crucial for sustainable management of groundwater resources, especially in a vulnerable continent like Africa. This study investigates the relationship between climate‐change drivers and potential groundwater recharge (PGR) patterns across Africa for a long‐term record (1960–2010). Water‐balance components were simulated by using the PCR‐GLOBWB model and were reproduced in both gridded maps and latitudinal trends that vary in space with minima on the Tropics and maxima around the Equator. Statistical correlations between temperature, storm occurrences, drought, and PGR were examined in six climatic regions of Africa. Surprisingly, different effects of climate‐change controls on PGR were detected as a function of latitude in the last three decades (1980–2010). Temporal trends observed in the Northern Hemisphere of Africa reveal that the increase in temperature is significantly correlated to the decline of PGR, especially in the Northern Equatorial Africa. The climate indicators considered in this study were unable to explain the alarming negative trend of PGR observed in the Sahelian region, even though the Standardized Precipitation‐Evapotranspiration Index (SPEI) values report a 15% drought stress. On the other hand, increases in temperature have not been detected in the Southern Hemisphere of Africa, where increasing frequency of storm occurrences determine a rise of PGR, particularly in southern Africa. Time analysis highlights a strong seasonality effect, while PGR is in‐phase with rainfall patterns in the summer (Northern Hemisphere) and winter (Southern Hemisphere) and out‐of‐phase during the fall season. This study helps to elucidate the mechanism of the processes influencing groundwater resources in six climatic zones of Africa, even though modelling results need to be validated more extensively with direct measurements in future studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
36.
In this study, the climate teleconnections with meteorological droughts are analysed and used to develop ensemble drought prediction models using a support vector machine (SVM)–copula approach over Western Rajasthan (India). The meteorological droughts are identified using the Standardized Precipitation Index (SPI). In the analysis of large‐scale climate forcing represented by climate indices such as El Niño Southern Oscillation, Indian Ocean Dipole Mode and Atlantic Multidecadal Oscillation on regional droughts, it is found that regional droughts exhibits interannual as well as interdecadal variability. On the basis of potential teleconnections between regional droughts and climate indices, SPI‐based drought forecasting models are developed with up to 3 months' lead time. As traditional statistical forecast models are unable to capture nonlinearity and nonstationarity associated with drought forecasts, a machine learning technique, namely, support vector regression (SVR), is adopted to forecast the drought index, and the copula method is used to model the joint distribution of observed and predicted drought index. The copula‐based conditional distribution of an observed drought index conditioned on predicted drought index is utilized to simulate ensembles of drought forecasts. Two variants of drought forecast models are developed, namely a single model for all the periods in a year and separate models for each of the four seasons in a year. The performance of developed models is validated for predicting drought time series for 10 years' data. Improvement in ensemble prediction of drought indices is observed for combined seasonal model over the single model without seasonal partitions. The results show that the proposed SVM–copula approach improves the drought prediction capability and provides estimation of uncertainty associated with drought predictions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
37.
Extended severe dry and wet periods are frequently observed in the northern continental climate of the Canadian Prairies. Prairie streamflow is mainly driven by spring snowmelt of the winter snowpack, whilst summer rainfall is an important control on evapotranspiration and thus seasonality affects the hydrological response to drought and wet periods in complex ways. A field‐tested physically based model was used to investigate the influences of climatic variability on hydrological processes in this region. The model was set up to resolve agricultural fields and to include key cold regions processes. It was parameterized from local and regional measurements without calibration and run for the South Tobacco Creek basin in southern Manitoba, Canada. The model was tested against snow depth and streamflow observations at multiple scales and performed well enough to explore the impacts of wet and dry periods on hydrological processes governing the basin scale hydrological response. Four hydro‐climatic patterns with distinctive climatic seasonality and runoff responses were identified from differing combinations of wet/dry winter and summer seasons. Water balance analyses of these patterns identified substantive multiyear subsurface soil moisture storage depletion during drought (2001–2005) and recharge during a subsequent wet period (2009–2011). The fractional percentage of heavy rainfall days was a useful metric to explain the contrasting runoff volumes between dry and wet summers. Finally, a comparison of modeling approaches highlights the importance of antecedent fall soil moisture, ice lens formation during the snowmelt period, and peak snow water equivalent in simulating snowmelt runoff.  相似文献   
38.
Groundwater resources are typically the main fresh water source in arid and semi‐arid regions. Natural recharge of aquifers is mainly based on precipitation; however, only heavy precipitation events (HPEs) are expected to produce appreciable aquifer recharge in these environments. In this work, we used daily precipitation and monthly water level time series from different locations over a Mediterranean region of Southeastern Spain to identify the critical threshold value to define HPEs that lead to appreciable aquifer recharge in this region. Wavelet and trend analyses were used to study the changes in the temporal distribution of the chosen HPEs (≥20 mm day?1) over the observed period 1953–2012 and its projected evolution by using 18 downscaled climate projections over the projected period 2040–2099. The used precipitation time series were grouped in 10 clusters according to similarities between them assessed by using Pearson correlations. Results showed that the critical HPE threshold for the study area is 20 mm day?1. Wavelet analysis showed that observed significant seasonal and annual peaks in global wavelet spectrum in the first sub‐period (1953–1982) are no longer significant in the second sub‐period (1983–2012) in the major part of the ten clusters. This change is because of the reduction of the mean HPEs number, which showed a negative trend over the observed period in nine clusters and was significant in five of them. However, the mean size of HPEs showed a positive trend in six clusters. A similar tendency of change is expected over the projected period. The expected reduction of the mean HPEs number is two times higher under the high climate scenario (RCP8.5) than under the moderate scenario (RCP4.5). The mean size of these events is expected to increase under the two scenarios. The groundwater availability will be affected by the reduction of HPE number which will increase the length of no aquifer recharge periods (NARP) accentuating the groundwater drought in the region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
39.
Winter wheat is one of China's most important staple food crops, and its production is strongly influenced by weather, especially droughts. As a result, the impact of drought on the production of winter wheat is associated with the food security of China. Simulations of future climate for scenarios A2 and A1B provided by GFDL_CM2, MPI_ECHAM5, MRI_CGCM2, NCAR_CCSM3, and UKMO_HADCM3 during 2001- 2100 are used to project the influence of drought on winter wheat yields in North China. Winter wheat yields are simulated using the crop model WOFOST (WOrld FOod STudies). Future changes in temperature and precipitation are analyzed. Temperature is projected to increase by 3.9-5.5℃ ? for scenario A2 and by 2.9-5.1℃ ? for scenario A1B, with fairly large interannual variability. Mean precipitation during the growing season is projected to increase by 16.7 and 8.6 mm (10 yr)-1, with spring precipitation increasing by 9.3 and 4.8 mm (10 yr)-1 from 2012-2100 for scenarios A2 and A1B, respectively. For the next 10-30 years (2012- 2040), neither the growing season precipitation nor the spring precipitation over North China is projected to increase by either scenario. Assuming constant winter wheat varieties and agricultural practices, the influence of drought induced by short rain on winter wheat yields in North China is simulated using the WOFOST crop model. The drought index is projected to decrease by 9.7% according to scenario A2 and by 10.3% according to scenario A1B during 2012-2100. This indicates that the drought influence on winter wheat yields may be relieved over that period by projected increases in rain and temperature as well as changes in the growth stage of winter wheat. However, drought may be more severe in the near future, as indicated by the results for the next 10-30 years.  相似文献   
40.
Abstract

Surveys in the Middle Estuary of the St Lawrence have yielded a data base consisting of more than 15,000 T‐S pairs distributed over 62 13‐h profiling stations. Although the T‐S curves at each station are remarkably linear, the variability of the slopes and intercepts of the lines is considerable. The means and standard deviations of the temperature and salinity at each individual station are not explicable in terms of linear combinations of the parameters for location in the Estuary, the upstream water properties, the phase of the spring‐neap cycle and the tidal energies.

It is shown that the tidally‐averaged density structure is separable into horizontal and vertical components and that its vertical variation over the whole Estuary may be explained by any one of three different functional forms. However, its horizontal variation is not explicable in terms of linear combinations of the parameters mentioned in the paragraph above.

Plots of the horizontal variations in temperature, salinity or density may only be meaningful if the data are collected synoptically, and even then cannot be considered to be accurate over time‐scales longer than one tidal cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号