首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   5篇
测绘学   3篇
大气科学   1篇
地球物理   13篇
地质学   19篇
海洋学   2篇
天文学   27篇
自然地理   8篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   5篇
  2005年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1983年   2篇
  1982年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
41.
42.
The northern mid-latitudes of Uranus produce greater episodes of bright cloud formation than any other region on the planet. Near 30°N, very bright cloud features were observed in 1999, 2004, and 2005, with lifetimes of the order of months. In October 2011, Gemini and HST observations revealed another unusually bright cloud feature near 23°N, which was subsequently identified in July 2011 observations and found to be increasing in brightness. Observations obtained at Keck in November 2011 revealed a second bright spot only 2°N of the first, but with a substantially different drift rate (?9.2°E/day vs ?1.4°E/day), which we later determined would lead to a close approach on 25 December 2011. A Hubble Target of Opportunity proposal was activated to image the results of the interaction. We found that the original bright spot had faded dramatically before the HST observations had begun and the second bright spot was found to be a companion of a new dark spot on Uranus, only the second ever observed. Both spots exhibited variable drift rates during the nearly 5 months of tracking, and both varied in brightness, with BS1 reaching its observed peak on 26 October 2011, and BS2 on 11 November 2011. Altitude measurements based on near-IR imaging in H and Hcont filters showed that the deeper BS2 clouds were located near the methane condensation level (≈1.2 bars), while BS1 was generally ~500 mb above that level (at lower pressures). Large morphological changes in the bright cloud features suggest that they are companion clouds of possibly orographic nature associated with vortex circulations, perhaps similar to companion clouds associated with the Great Dark Spot on Neptune, but in this case at a much smaller size scale, spanning only a few degrees of longitude at their greatest extents.  相似文献   
43.
Available data on the stability of amphibolites and the basalt-eclogite transition allow an estimate of the stability field of eclogites in wet systems. It appears that if water and load pressures are comparable, eclogites cannot be stable in the crust; the formation of eclogites in the crust requires moderate total pressures and low water pressures. If the reactions forming eclogites occur in essentially dry rocks, their formation may reflect kinetic as well as equilibrium factors.  相似文献   
44.
45.
The distributions of dissolved organic carbon (DOC) and the natural carbon isotope ratio of DOC (DO13C) in estuaries reflect the predominant sources and sinks of organic matter from both allochthonous and autochthonous origins. The traditional view is that DOC in land-margin ecosystems reflects mainly the mixing of land-derived and oceanic DOC. However, this view is not consistent with the bulk of our data from a survey of DOC and DO13C distributions in estuaries on the East and Gulf coasts of the USA. While it is accurate that the DOC in estuaries includes material derived from land and from the ocean, the distributions of DOC and DO13C in several estuaries reflect additional DOC inputs from estuarine phytoplankton and tidal marshes. Even when DOC concentrations were distributed conservatively, the isotopic composition of the DOC revealed the existence of a dynamic cycle of DOC input and removal in some systems.  相似文献   
46.
Previous studies of Louisiana estuaries have indicated a central role of Spartina alterniflora marshes in supporting production of the commercially important brown shrimp, Farfantepenaeus aztecus. Brown shrimp are an estuarine-dependent species and spend one to three springtime months in estuaries as small juveniles, with highest shrimp densities found at marsh edges. Later estuarine and offshore production of brown shrimp is correlated both with marsh area and with abundance of smaller juveniles found in unvegetated open bays near marshes. This paper investigates the idea that open bays are an additional important nursery habitat for Louisiana brown shrimp, with bays possibly supporting the bulk of shrimp populations even while shrimp densities expressed on a square meter basis are lower in the bays. To assay possible differences in shrimp abundances and residency in marsh ponds vs. adjacent open bays, springtime field work was conducted in 2004–2006 near the Louisiana University Marine Consortium Laboratory at Cocodrie, Louisiana. Seine surveys showed similar-sized shrimp were present in marsh ponds (<20 m in diameter) and an adjacent open bay (<1 m deep, 2 km in diameter) and that shrimp were twice as dense in the marsh ponds. Natural C, N, and S isotope tags provided distinctive labeling of shrimp from marsh ponds versus bays; shrimp residency appeared high in both areas with <10% of shrimp present as immigrants from other areas. Widely spaced collections from several Louisiana bay systems and also Galveston Bay, Texas showed that the S isotope tags provided the most general tags for marsh origins, with low S isotope values of 1–9‰ in shrimp muscle tissue consistently indicating marsh origins. Importance of marshes for brown shrimp production across Terrebonne and Barataria Bays, Louisiana was evaluated with S isotopes using spring 2005 collections. Results showed that marshes supported about 1/3 of total shrimp production; 2/3 of Louisiana brown estuarine shrimp production may depend on the three to four times more extensive open bays. Given these results, coastal restoration efforts in Louisiana might focus on measures such as barrier island conservation and restoration that protect both bays and marshes, rather than focusing on measures that specifically target marshes and neglect open bays.  相似文献   
47.
L.A. Sromovsky  P.M. Fry 《Icarus》2010,210(1):230-257
The Cassini flyby of Jupiter in 2000 provided spatially resolved spectra of Jupiter’s atmosphere using the Visual and Infrared Mapping Spectrometer (VIMS). A prominent characteristic of these spectra is the presence of a strong absorption at wavelengths from about 2.9 μm to 3.1 μm, previously noticed in a 3-μm spectrum obtained by the Infrared Space Observatory (ISO) in 1996. While Brooke et al. (Brooke, T.Y., Knacke, R.F., Encrenaz, T., Drossart, P., Crisp, D., Feuchtgruber, H. [1998]. Icarus 136, 1-13) were able to fit the ISO spectrum very well using ammonia ice as the sole source of particulate absorption, Sromovsky and Fry (Sromovsky, L.A., Fry, P.M. [2010]. Icarus 210, 211-229), using significantly revised NH3 gas absorption models, showed that ammonium hydrosulfide (NH4SH) provided a better fit to the ISO spectrum than NH3, but that the best fit was obtained when both NH3 and NH4SH were present in the clouds. Although the large FOV of the ISO instrument precluded identification of the spatial distribution of these two components, the VIMS spectra at low and intermediate phase angles show that 3-μm absorption is present in zones and belts, in every region investigated, and both low- and high-opacity samples are best fit with a combination of NH4SH and NH3 particles at all locations. The best fits are obtained with a layer of small ammonia-coated particles (r ∼ 0.3 μm) overlying but often close to an optically thicker but still modest layer of much larger NH4SH particles (r ∼ 10 μm), with a deeper optically thicker layer, which might also be composed of NH4SH. Although these fits put NH3 ice at pressures less than 500 mb, this is not inconsistent with the lack of prominent NH3 features in Jupiter’s longwave spectrum because the reflectivity of the core particles strongly suppresses the NH3 absorption features, at both near-IR and thermal wavelengths. Unlike Jupiter, Saturn lacks the broad 3-μm absorption feature, but does exhibit a small absorption near 2.965 μm, which resembles a similar jovian feature and suggests that both planets contain upper tropospheric clouds of sub-micron particles containing ammonia as a minor fraction.  相似文献   
48.
L.A. Sromovsky  P.M. Fry 《Icarus》2007,192(2):527-557
Seven-band near-IR adaptive optics imaging of Uranus by the Keck II telescope during 2004, with the assistance of selected Hubble Space Telescope images, provides new constraints on the uranian vertical cloud structure and CH4 mixing ratio, after tuned deconvolutions are applied to remove significant limb darkening distortions. The most strongly absorbing bands approximately agree with the stratospheric haze model of Rages et al. [Rages, K., Pollack, J.B., Tomasko, M.G., Doose, L.R., 1991. Icarus 89, 359–376]. The next most absorbing bands suggest a CH4 relative humidity of 50–60% above the 1.2-bar condensation level. Window channels imply effective cloud pressures at 12° S that vary from 9 to 3.5 bars, and reflectivity values that vary from 7 to 4%, as the assumed CH4 mixing ratio varies from 0.75 to 4%. The shape of the center-to-limb radiance profile is in best agreement with the deep cloud being translucent, with relatively low optical depth, and is most consistent with low methane mixing ratios (0.75–1%) if the cloud particles are conservative. Non-conservative particles provide good fits over a wide range of mixing ratios. If C and S are enhanced by the same factor over solar mixing ratios, then the cloud pressures inferred from near-IR observations would be less than H2S condensation pressures for methane mixing ratios of 1.3% or greater. The bright band at 45° S must be partly produced by increased particulate scattering at pressures 2 bars to be consistent with its absence in 1.9-μm images and its presence in 0.619-μm images. The reflectivity of the lower clouds declines to nearly negligible values in the northern hemisphere, where I/F observations beyond 50° N are nearly those of a clear atmosphere. The most surprising result is the general lack of scattering originating from the 1.2-bar region where methane is expected to condense. Exceptions occur for discrete features. A large and long-lived discrete feature at 34° S is associated with particulates near 700 mb and 4.5 bars. The highest discrete feature, near 26° N, reached pressures 200 mb and was eleven times brighter than the background atmosphere in K images.  相似文献   
49.
Cosmic‐ray soil moisture sensors have the advantage of a large measurement footprint (approximately 700 m in diameter) and are able to operate continuously to provide area‐averaged near‐surface (top 10–20 cm) volumetric soil moisture content at the field scale. This paper presents the application of this technique at four sites in southern England over almost 3 years. Results show the soil moisture response to contrasting climatic conditions during 2011–2014 and are the first such field‐scale measurements made in the UK. These four sites are prototype stations for a UK COsmic‐ray Soil Moisture Observing System, and particular consideration is given to sensor operating conditions in the UK. Comparison of these soil water content observations with the Joint UK Land Environment Simulator 10‐cm soil moisture layer shows that these data can be used to test and diagnose model performance and indicate the potential for assimilation of these data into hydro‐meteorological models. The application of these large‐area soil water content measurements to evaluate remotely sensed soil moisture products is also demonstrated. Numerous applications and the future development of a national COsmic‐ray Soil Moisture Observing System network are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
50.
A major program at the University of Calgary's Rothney Astrophysical Observatory (RAO) is the study of eclipsing close-binary stars, which, because of circularization effects, are all cases of the restricted three-body problem. The physical properties of such systems are derived from modeling of the light and radial velocity curves. Uniqueness questions notwithstanding, careful use of the technique is found to yield reliable elements of the orbit and parameters of the component stars, even in the face of light curve perturbations. This work requires a greatly enlarged data base over previous work, and more complex modeling procedures, necessitating the use of a supercomputer. A version of the generalized synthetic light curve program of Wilson (1979) with star spot simulations has been adapted to and optimized for the University of Calgary's Cyber 205 supercomputer and further improvements are underway. With the use of personal computer graphics software, results have been transformed into three-dimensional, rotating models which help visualize the overcontact and perturbation conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号