首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1702篇
  免费   215篇
  国内免费   91篇
测绘学   19篇
大气科学   10篇
地球物理   409篇
地质学   1463篇
海洋学   15篇
天文学   1篇
综合类   47篇
自然地理   44篇
  2023年   5篇
  2022年   24篇
  2021年   33篇
  2020年   34篇
  2019年   40篇
  2018年   26篇
  2017年   38篇
  2016年   62篇
  2015年   66篇
  2014年   81篇
  2013年   54篇
  2012年   38篇
  2011年   52篇
  2010年   62篇
  2009年   149篇
  2008年   202篇
  2007年   170篇
  2006年   189篇
  2005年   118篇
  2004年   105篇
  2003年   65篇
  2002年   57篇
  2001年   41篇
  2000年   37篇
  1999年   35篇
  1998年   32篇
  1997年   32篇
  1996年   28篇
  1995年   37篇
  1994年   26篇
  1993年   23篇
  1992年   14篇
  1991年   1篇
  1990年   5篇
  1989年   4篇
  1988年   7篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   6篇
  1982年   1篇
  1980年   1篇
  1954年   1篇
排序方式: 共有2008条查询结果,搜索用时 31 毫秒
41.
通过研究河北平原区地下水超采区第四系第三承压含水层水位的变化机理,依据上覆地层的荷载效应、非稳定流抽水中弱透水层的释水和越流过程,阐明地下水超采区内地下水位大幅下降的内在规律,为科学合理地提取地震前兆信息提供科学依据。  相似文献   
42.
A fluorescent labelling method is presented as a new tool for the investigation of organic particle transport and biogenic carbon cycling processes in sandy littoral interstices at Lake Tegel, Berlin, Germany. Passive particle transport through the pore system was studied by in situ exposition of 2.4 μm monodisperse polymeric resin microparticles stained with 7-amino-4-methylcoumarin (AMC). Uptake of fluorescein-5-isothiocyanate (FITC)-labelled Chlorella vulgaris and fine particulate organic matter (FPOM) by the interstitial fauna was investigated in laboratory and field experiments. The major portion (>85%) of the FITC-labelled particles added to sediment cores was recovered from the topmost centimetre of sediment during the study period of 14 days. Uptake of FITC-labelled FPOM was observed in several benthic groups, e.g. chironomids, microcrustaceans, oligochaetes and tardigrads, whereas C. vulgaris was ingested by oligochaetes only. There is evidence to suggest that both are suitable materials for investigating the fragmentation and ingestion of organic material by herbivorous and detritivorous fauna. Field experiments with inert microparticles and FITC-labelled FPOM (<1 mm) prepared from dried alder leaves were carried out in plexiglass tubes as in situ whole core technique. Within the investigation period of two weeks, the transport of FPOM was restricted to the topmost 2–3 cm of sediment in conjunction with a distinct fragmentation to finer size classes with respect to increasing sediment depth. Vertical FPOM transport was hindered by a high interstitial concentration of natural POM and an intensive settlement of the interstices by algae (mainly epispammic algae, 65–96% of algae cell number) and extra-cellular polymeric substances (EPS), which formed a dense three-dimensional structure.  相似文献   
43.
It is evident that the hydrodynamic dispersion coefficient and linear flow velocity dominate solute transport in aquifers. Both of them play important roles characterizing contaminant transport. However, by definition, the parameter of contaminant transport cannot be measured directly. For most problems of contaminant transport, a conceptual model for solute transport generally is established to fit the breakthrough curve obtained from field testing, and then suitable curve matching or the inverse solution of a theoretical model is used to determine the parameter. This study presents a one-dimensional solute transport problem for slug injection. Differential analysis is used to analyze uncertainty propagation, which is described by the variance and mean. The uncertainties of linear velocity and hydrodynamic dispersion coefficient are, respectively, characterized by the second-power and fourth-power of the length scale multiplied by a lumped relationship of variance and covariance of system parameters, i.e. the Peclet number and arrival time of maximum concentration. To validate the applicability for evaluating variance propagation in one-dimensional solute transport, two cases using field data are presented to demonstrate how parametric uncertainty can be caught depending on the manner of sampling.  相似文献   
44.
Groundwater characterization involves the resolution of unknown system characteristics from observation data, and is often classified as an inverse problem. Inverse problems are difficult to solve due to natural ill-posedness and computational intractability. Here we adopt the use of a simulation–optimization approach that couples a numerical pollutant-transport simulation model with evolutionary search algorithms for solution of the inverse problem. In this approach, the numerical transport model is solved iteratively during the evolutionary search. This process can be computationally intensive since several hundreds to thousands of forward model evaluations are typically required for solution. Given the potential computational intractability of such a simulation–optimization approach, parallel computation is employed to ease and enable the solution of such problems. In this paper, several variations of a groundwater source identification problem is examined in terms of solution quality and computational performance. The computational experiments were performed on the TeraGrid cluster available at the National Center for Supercomputing Applications. The results demonstrate the performance of the parallel simulation–optimization approach in terms of solution quality and computational performance.  相似文献   
45.
This paper introduces a new method for simulating large-scale subsurface contaminant transport that combines an Analytic Element Method (AEM) groundwater flow solution with a split-operator Streamline Method for modeling reactive transport. The key feature of the method is the manner in which the vertically integrated AEM flow solution is used to construct three-dimensional particle tracks that define the geometry of the Streamline Method. The inherently parallel nature of the algorithm supports the development of reactive transport models for spatial domains much larger than current grid-based methods. The applicability of the new approach is verified for cases with negligible transverse dispersion through comparisons to analytic solutions and existing numerical solutions, and parallel performance is demonstrated through a realistic test problem based on the regional-scale transport of agricultural contaminants from spatially distributed sources.  相似文献   
46.
For the evaluation of policy action programs to improve groundwater quality, research institutes and governments intensively monitor nitrate concentrations in shallow or near surface groundwater. However, trend detection is often hampered by the large seasonal and multi-annual temporal variability in nitrate concentrations, especially in shallow groundwater within 0–5 m below the surface in relatively humid regions. This variability is mainly caused by variations in precipitation excess (precipitation minus evapotranspiration) that results in strong variability in groundwater recharge. The objective of this study was to understand and quantify this weather-induced variability in shallow groundwater nitrate concentrations.We present an example of measured weather related variations in shallow groundwater nitrate concentrations from De Marke, an intensively monitored experimental farm in The Netherlands. For the quantification of the weather-induced variability, concentration-indices were calculated using a 1D model for water and solute transport. The results indicate that nitrate concentrations in the upper meter of groundwater at De Marke vary between 55% and 153% of the average concentration due to meteorological variability. The concentration-index quantification method was successfully used to distinguish weather related variability from human-induced trends in the nitrate concentration monitoring data from De Marke. Our model simulations also shows that sampling from fixed monitoring wells produces less short term variability than measuring from open boreholes. In addition, using larger screen depths and longer screens filters out short term temporal variability at the cost of a more delayed detection of trends in groundwater quality.  相似文献   
47.
A prototype flow meter has been developed, based upon the heat perturbation principle, to monitor groundwater specific discharge in soft sediments. The device is designed for use in spatially intensive, long-term monitoring campaigns in remote or inconvenient locations, and is cheap, robust and capable of being logged automatically. The results of the laboratory tests indicate that the heat perturbation principle is suitable for determining the magnitude of specific discharge to a degree of accuracy that would be useful in practical applications in dynamic groundwater systems with rapidly changing flows of approximately 1 md−1 or more and that the groundwater flow direction can generally be determined to a high level of precision. The accuracy and reliability of the estimates of specific discharge have been shown to depend strongly upon the geometrical precision of manufacture and the quality of the temperature monitoring system. These factors become most significant in the estimation of lower flows and further investigation is required to determine the detection limit of the device. Specific discharge estimates have been shown to be insensitive to dispersivity values appropriate to the scale of the device. Unlike the majority of heat perturbation devices, calibration is unnecessary.  相似文献   
48.
尹凤玲  张怀  石耀霖 《地球物理学报》2015,58(10):3649-3659
华北地区由于长期持续的地下水过量开采,导致了大面积地下水位大幅下降,引发地面塌陷、地下水质污染等一系列地质环境问题,这些现象早已为人们所熟知和关注.然而地下水位下降还会造成百米量级浅部地温及其梯度的变化,因此即使来自地球深部的大地热流密度没有变化,年度平均的从表浅部位通过地表实际传导进入大气的热流密度会减小,这是中外文献中尚未见讨论过的问题.我们通过数值模拟发现假定大地热流密度不变的条件下,华北数万平方公里地下水位下降会造成百米尺度内的地温降低,从而传入大气的热流密度降低40%以上,且会持续数百年以上的时间.这种长时间大范围的传导入大气的热流密度变化对环境会造成什么影响是一个十分值得关注的问题.这一预测在一定程度上得到了气象站地温观测数据的支持,但由于目前气象观测站只有3.2m深度范围内的地温资料,累计不超过5、60年,中间还有10余年的间断,而且表浅深度地温受地表多种因素的影响也较大,这些资料难以对我们关心的地下水位下降引起流入大气的热流密度变化这一问题提供直接确凿的数据来进行分析,因此今后有必要开展对地下数十乃至数百米地温进行持续精确的监测工作.  相似文献   
49.
Analysis of borehole flow logs is a valuable technique for identifying the presence of fractures in the subsurface and estimating properties such as fracture connectivity, transmissivity and storativity. However, such estimation requires the development of analytical and/or numerical modeling tools that are well adapted to the complexity of the problem. In this paper, we present a new semi-analytical formulation for cross-borehole flow in fractured media that links transient vertical-flow velocities measured in one or a series of observation wells during hydraulic forcing to the transmissivity and storativity of the fractures intersected by these wells. In comparison with existing models, our approach presents major improvements in terms of computational expense and potential adaptation to a variety of fracture and experimental configurations. After derivation of the formulation, we demonstrate its application in the context of sensitivity analysis for a relatively simple two-fracture synthetic problem, as well as for field-data analysis to investigate fracture connectivity and estimate fracture hydraulic properties. These applications provide important insights regarding (i) the strong sensitivity of fracture property estimates to the overall connectivity of the system; and (ii) the non-uniqueness of the corresponding inverse problem for realistic fracture configurations.  相似文献   
50.
地下水测年方法及其在地震监测中的应用展望   总被引:1,自引:0,他引:1  
对地下水动力学特征的观测与研究,是地震前兆监测的重要方法之一。地下水动力学研究中,利用地下水测年方法,可以对地下水的补给、径流特征及更新能力作出定性和定量的分析。本文介绍了近年来国际上常用的地下水测年方法,总结了前人在该领域的主要研究进展,重点分析了地下水更新能力与地震前兆信息的关系、地下水运动规律与地震构造活动的关系以及地下水浅层补给与异常干扰排除的方法等。已有的研究成果表明,地下水年龄的测定与分析方法对于了解监测点映震能力、评价构造活动与地震活动程度,以及在观测资料异常变化的现场核实等方面,可以发挥重要作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号