首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   4篇
  国内免费   12篇
地球物理   10篇
地质学   45篇
海洋学   3篇
综合类   2篇
自然地理   1篇
  2023年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2013年   1篇
  2012年   7篇
  2011年   1篇
  2010年   1篇
  2009年   7篇
  2008年   3篇
  2007年   1篇
  2006年   3篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1991年   1篇
排序方式: 共有61条查询结果,搜索用时 484 毫秒
41.
运用电子探针Map图分析技术在碧溪岭石榴石橄榄岩的橄榄石中发现了磁铁矿针状出溶体成分不均匀的现象,即同一岩石样品的橄榄石中针状出溶体既有前人发现的含钛一铬磁铁矿,也有本文发现的含铬钛磁铁矿和磁铁矿两种针状出溶体。研究认为,针状出溶体成分出现的差异可能是由于Ti和Cr在原始的β-橄榄石相中分布不均匀所致,这种出溶体的出现暗示这些橄榄石可能是由地幔特有的尖晶石结构相转变而成,为确定这些橄榄岩的来源深度和大陆俯冲过程提供了有意义的信息。  相似文献   
42.
Ultramafic (lherzolites, metasomatized peridotites, harzburgites,websterites and clinopyroxenites) and mafic igneous (basalts,dolerites, diorites and gabbros) rocks exposed at the sea-flooralong the West Iberia continental margin represent a rare opportunityto study the transition zone between continental and oceaniclithosphere. The igneous rocks are enriched in LREE, unlikeNorth Atlantic MORB. A correlation between their 143Nd/144Ndisotopic composition and Ce/Yb ratio suggests that they originatefrom mixing between partial melts of a depleted mantle sourcesimilar to DMM and of an enriched mantle source which may residewithin the continental lithosphere. Clinopyroxenes and amphibolesin the ultramafic rocks are LREE depleted and have flat HREEpatterns with concentrations higher than those of abyssal peridotites.Clinopyroxenes in the harzburgites are less LREE depleted buthave lower HREE concentrations. The clinopyroxenes in the GaliciaBank (GB) lherzolites have radiogenic Nd (143Nd/144Nd rangingfrom 0·512937 to 0·513402) and unradiogenic Sr(87Sr/86Sr ranging from 0·702100 to 0·702311)isotopic ratios similar to, or higher than, DMM (Depleted MORBMantle) whereas the clinopyroxenes in the Iberia Abyssal Plainwebsterites have low-Nd isotopic compositions (143Nd/144Nd rangingfrom 0·512283 to 0·512553) with high-Sr isotopicratios (87Sr/86Sr ranging from 0·704170 to 0·705919).Amphiboles in Galicia Bank lherzolites and diorites have Nd–Srisotopic compositions (143Nd/144Nd from 0·512804 to 0·512938and 87Sr/86Sr from 0·703243 to 0·703887) intermediatebetween those of the clinopyroxenes from the Galicia Bank andthe Iberia Abyssal Plain, but similar to the clinopyroxenesin the 5100 Hill harzburgite (143Nd/144Nd = 0·512865and 87Sr/86Sr = 0·703591) and to the igneous rocks (143Nd/144Ndranging from 0·512729 to 0·513121 and 87Sr/86Srranging from 0·702255 to 0·705109). The majorand trace element compositions of cpx in the Galicia Bank spinellherzolites provide evidence for large-scale refertilizationof the lithospheric upper mantle by MORB-like tholeiitic melts.The associated harzburgites did not undergo partial meltingduring the rifting stage, but, in earlier times, probably during,or even before, the Hercynian orogeny. Iberia Abyssal Plainwebsterites are interpreted as high-pressure cumulates formedin the mantle. Their high Sm/Nd ratios (from 0·43 to0·67) coupled with very low-Nd isotopic compositionsare best explained by a two-stage history: formation of thecumulates from the percolation of enriched melts long beforethe rifting, followed by low-degree partial melting of the pyroxenites,accounting for their LREE depletion. This last event probablyoccurs during the rifting episode, 122 Myr ago. The isotopicheterogeneities observed in the ultramafic rocks of the Iberiamargin were already present at the time of the rifting event.They reflect a long and complex history of depletion and enrichmentevents in an old part of the mantle, and provide strong argumentsfor a sub-continental origin of this part of the upper mantle. KEY WORDS: Iberia margin; mantle peridotites; igneous rocks; petrology; geochemistry  相似文献   
43.
It is now admitted that the high strength of the subcontinental uppermost mantle controls the first order strength of the lithosphere. An incipient narrow continental rift therefore requires an important weakening in the subcontinental mantle to promote lithosphere-scale strain localisation and subsequent continental break-up. Based on the classical rheological layering of the continental lithosphere, the origin of a lithospheric mantle shear/fault zone has been attributed to the existence of a brittle uppermost mantle. However, the lack of mantle earthquakes and the absence of field occurrences in the mantle fault zone led to the idea of a ductile-related weakening mechanism, instead of brittle-related, for the incipient mantle strain localisation. In order to provide evidence for this mechanism, we investigated the microstructures and lattice preferred orientations of mantle rocks in a kilometre-scale ductile strain gradient in the Ronda Peridotites (Betics cordillera, Spain). Two main features were shown: 1) grain size reduction by dynamic recrystallisation is found to be the only relevant weakening mechanism responsible for strain localisation and 2), with increasing strain, grain size reduction is coeval with both the scattering of orthopyroxene neoblasts and the decrease of the olivine fabric strength (LPO). These features allow us to propose that grain boundary sliding (GBS) partly accommodates dynamic recrystallisation and subsequent grain size reduction.A new GBS-related experimental deformation mechanism, called dry-GBS creep, has been shown to accommodate grain size reduction during dynamic recrystallisation and to induce significant weakening at low temperatures (T < 800 °C). The present microstructural study demonstrates the occurrence of the grain size sensitive dry-GBS creep in natural continental peridotites and allows us to propose a new rheological model for the subcontinental mantle. During dynamic recrystallisation, the accommodation of grain size reduction by three competing deformation mechanisms, i.e., dislocation, diffusion and dry-GBS creeps, involves a grain size reduction controlled by the sole dislocation creep at high temperatures (> 800 °C), whereas dislocation creep and dry-GBS creep, are the accommodating mechanisms at low temperatures (< 800 °C). Consequently, weakening is very limited if the grain size reduction occurs at temperatures higher than 800 °C, whereas a large weakening is expected in lower temperatures. This large weakening related to GBS creep would occur at depths lower than 60 km and therefore provides an explanation for ductile strain localisation in the uppermost continental mantle, thus providing an alternative to the brittle mantle.  相似文献   
44.
Analyses of bathymetry, gravity and seismic reflection data of the diffusive plate boundary in the central Indian Ocean reveal a new kind of deformed structure besides the well-reported structures of long-wavelength anticlinal basement rises and high-angle reverse faults. The structure (basement trough) has a length of about 150 km and deepens by up to 1 km from its regional trend (northward dipping). The basement trough includes a rise at its center with a height of about 1.5km. The rise is about 10 km wide with rounded upper surface and bounded by vertical faults. A broad freeair gravity low of about 20 mGal and a local high of 8 mGal in its center are associated with the identified basement trough and rise structure respectively. Seismic results reveal that the horizontal crustal compression prevailing in the diffusive plate boundary might have formed the basement trough possibly in early Pliocene time. Differential loading stresses have been generated from unequal crust/sediment thickness on lower crustal and upper mantle rocks. A thin semi-ductile serpentinite layer existing near the base of the crust that is interpreted to have been formed at mid-ocean ridge and become part of the lithosphere, may have responded to the downward loading stresses generated by the sediments and crustal rocks to inject the serpentinites into the overlying strata to form a classic diapiric structure.  相似文献   
45.
郭翟蓉  王建  张佳佳  李爱 《世界地质》2018,37(2):423-435
青岛的仰口和日照的梭罗树是苏鲁超高压变质带中重要的蛇纹岩出露区。系统的岩石地球化学分析表明,仰口和梭罗树地区的蛇纹岩具有高Mg、低Al_2O_3/Si O_2、贫高场强元素(Nb、Th、Zr和Hf)和重稀土元素(HREE)的特征,其原岩是经历了不同程度部分熔融后的地幔残余,符合弧前地幔橄榄岩的特征。经模拟估算,仰口蛇纹岩的原岩熔融程度15%,梭罗树蛇纹岩的原岩熔融程度在20%~25%之间。蛇纹岩富流体迁移元素(U、Pb和LREE),且LREE和HFSE无明显相关性的地球化学特征表明,研究区蛇纹岩原岩在弧前地幔楔环境下,受到俯冲板片释放的含H_2O流体作用发生蛇纹石化,形成了流体迁移元素富集的蛇纹岩。  相似文献   
46.
Keiko  Hattori  Simon  Wallis  Masaki  Enami  Tomoyuki  Mizukami 《Island Arc》2010,19(1):192-207
The Higashi-akaishi garnet-bearing ultramafic body in the Sanbagawa metamorphic belt, Southwest Japan, represents a rare example of oceanic-type ultrahigh-pressure metamorphism. The body of 2 km × 5 km is composed mostly of anhydrous dunite with volumetrically minor lenses of clinopyroxene-rich rocks. Dunite samples contain high Ir-type platinum group elements (PGE) and Cr in bulk rocks, high Mg and Ni in olivine, and high Cr in spinel. On the other hand, clinopyroxene-rich rocks contain low concentrations of Ir-type PGE and Cr, high concentrations of fluid-mobile elements in bulk rocks, and low Ni and Mg in olivine. Clinopyroxene is diopsidic with low Al2O3. The compositions of bulk rocks and mineral chemistry of spinel, olivine, and clinopyroxene suggest that the olivine-dominated rocks are residual mantle peridotites after high degrees of influx partial melting, and that the clinopyroxene-rich rocks are cumulates of subduction-related melts. Thus, the Higashi-akaishi ultramafic body originated from the interior of the mantle wedge, most likely the forearc upper mantle. It was then incorporated into the Sanbagawa subduction channel by a mantle flow, and underwent high pressure metamorphism to a depth greater than 100 km. Such a strong active flow in the mantle wedge is likely facilitated by the lack of serpentinites along the interface between the slab and the overlying mantle, as it was too hot for serpentine. These unusually hot conditions and strong active mantle flow may reflect conditions in the earliest stage of development of subduction, and may have been maintained by massive upwelling and subsequent eastward flow of asthenospheric mantle in the northeastern Asian continent in Cretaceous time when the Sanbagawa belt began to form.  相似文献   
47.
Serpentinites, which contain up to 13 wt% of water, are important reservoirs for chemical recycling in subduction zones. In the past two decades, forearc mantle serpentinites were identified in different locations around the world. Here, we present petrology and whole rock chemistry of ultramafic and mafic rocks dredged from the Hahajima Seamount, which is located 24–40 km west to the junction of the Izu-Bonin Trench and the Mariana Trench. Nearly all the collected samples are extensively hydrated, and olivine grains in ultramafic rocks are replaced by serpentine minerals, with only one sample preserving remaining trace of orthopyroxene. Our new results show that the Hahajima serpentinized peridotite samples are all MgO-rich(~42 wt%), but have low contents in Al_2O_3, CaO, rare earth and high field strength elements, which is consistent with the overall depleted character of their mantle protoliths. Model calculations indicate that these Hahajima peridotite samples were derived from 10%–25% partial melting of the presumed fertile mantle source, which is generally lower than those of peridotites from Torishima Forearc Seamount, Conical Seamount and South Chamorro Seamount(mostly25%). All the serpentinites from these four forearc seamounts show strong enrichment in fluid-mobile and lithophile elements(Li, Sr, Pb and U). In details, Hahajima Seamount serpentinites do not have obvious enrichment in Cs and Rb, and display remarkably high abundances of U. These observations indicate that the serpentinization of Hahajima peridotites occurred by addition of seawater or low temperature seawater-derived hydrothermal fluid, without or with little contribution from slab-derived fluids. The geochemical signature of serpentinites from Hahajima Seamount could be interpreted as the result of the combination of extensive partial melting and subsequent percolation of seawater through the mantle wedge.  相似文献   
48.
P–T  paths based on parageneses in the immediate vicinity of former high-temperature contact zones between mantle peridotites and granulitic country rocks of the Central Vosges (NE France) were derived by applying several conventional thermometers and thermobarometric calculations with an internally consistent dataset. The results indicate that former garnet peridotites and garnet–spinel peridotites were welded together with crustal rocks at depths corresponding to 1–1.2 GPa. The temperature of the crustal rocks was about 650–700 °C at this stage, whereas values of 1100 °C (garnet peridotites) and 800–900 °C (garnet–spinel peridotites) were calculated for the ultramafic rocks. After emplacement of the mantle rocks, exhumation of the lower crust took place to a depth corresponding to 0.2–0.3 GPa. The temperatures of the incorporated peridotite slices were still high (900–1000 °C) at this stage. This is indicated by the presence of high- T  /low- P parageneses ( c . 800 °C, 0.2–0.3 GPa) in a small (1–10 m) contact aureole around a former garnet peridotite. Crustal rocks distant to the peridotites equilibrated in the same pressure range at lower temperature (650–700 °C). High cooling rates (102–103 °C Ma−1) were calculated for a garnet–biotite rock inclusion in the peridotites and for the crustal rocks at the contact by applying garnet–biotite diffusion modelling. Minimum rates of 0.75–7.5 cm a−1 are required for vertical ascent of rock units (30 km vertical distance) derived from the crust–mantle boundary, resulting in a late Variscan (340 Ma) high- T  /low- P event.  相似文献   
49.
Garnet peridotites occur in quartzofeldspathic gneisses in the Northern Qaidam Mountains, western China. They are rich in Mg and Cr, with mineral compositions similar to those in mantle peridotites found in other orogenic belts and as xenoliths in kimberlite. Garnet‐bearing lherzolites interlayered with dunite display oriented ilmenite and chromite lamellae in olivine and pyroxene lamellae in garnet that have been interpreted to indicate pressures in excess of 6 GPa. However, some garnet porphyroblasts include hornblende, chlorite and spinel + orthopyroxene symplectite after garnet; some clinopyroxene porphyroblasts include abundant actinolite/edenite, calcite and lizardite in the lherzolite; some olivine porphyroblasts (Fo92) include an earlier generation Mg‐rich olivine (Fo95–99), F‐rich clinohumite, pyroxene, chromite, anthophyllite/cummingtonite, Cl‐rich lizardite, carbonates and a new type of brittle mica, here termed ‘Ca‐phlogopite’, in the associated dunite. The pyrope content of garnet increases from core to rim, reaching the pyrope content (72 mol.%) of garnet typically found in the xenoliths in kimberlite. The simplest interpretation of these observations is that the rock association was formerly mantle peridotite emplaced into the oceanic crust that was subjected to serpentinization by seawater‐derived fluids near the sea floor. Dehydration during subduction to 3.0–3.5 GPa and 700 °C transformed these serpentinites into garnet lherzolite and dunite, depending on their Al and Ca contents. Pseudosection modelling using thermocalc shows that dehydration of the serpentinites is progressive, and involved three stages for Al‐rich and two stages for Al‐poor serpentinites, corresponding to the breakdown of the key hydrous minerals. Static burial and exhumation make olivine a pressure vessel for the pre‐subduction mineral inclusions during ultrahigh‐pressure (UHP) metamorphism. The time span of the UHP event is constrained by the clear interface between the two generations of olivine to be very short, implying rapid subduction and exhumation.  相似文献   
50.
Spinel and plagioclase peridotites from the Mt.Maggiore (Corsica, France) ophiolitic massif record a composite asthenosphere–lithosphere history of partial melting and subsequent multi-stage melt–rock interaction. Cpx-poor spinel lherzolites are consistent with mantle residues after low-degree fractional melting (F = 5–10%). Opx + spinel symplectites at the rims of orthopyroxene porphyroclasts indicate post-melting lithospheric cooling (T = 970–1,100°C); this was followed by formation of olivine embayments within pyroxene porphyroclasts by melt–rock interaction. Enrichment in modal olivine (up to 85 wt%) at constant bulk Mg values, and variable absolute REE contents (at constant LREE/HREE) indicate olivine precipitation and pyroxene dissolution during reactive porous melt flow. This stage occurred at spinel-facies depths, after incorporation of the peridotites in the thermal lithosphere. Plagioclase-enriched peridotites show melt impregnation microtextures, like opx + plag intergrowths replacing exsolved cpx porphyroclasts and interstitial gabbronoritic veinlets. This second melt–rock interaction stage caused systematic chemical changes in clinopyroxene (e.g. Ti, REE, Zr, Y increase), related to the concomitant effects of local melt–rock interaction at decreasing melt mass, and crystallization of small (<3%) trapped melt fractions. LREE depletion in minerals of the gabbronoritic veinlets indicates that the impregnating melts were more depleted than normal MORB. Preserved microtextural evidence of previous melt–rock interaction in the impregnated peridotites suggests that they were progressively uplifted in response to lithosphere extension and thinning. Migrating melts were likely produced by mantle upwelling and melting related to extension; they were modified from olivine-saturated to opx-saturated compositions, and caused different styles of melt–rock interaction (reactive spinel harzburgites, vs. impregnated plagioclase peridotites) depending on the lithospheric depths at which interaction occurred. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号