首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   21篇
  国内免费   4篇
地球物理   60篇
地质学   95篇
海洋学   7篇
天文学   2篇
综合类   1篇
自然地理   6篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   17篇
  2019年   7篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   8篇
  2013年   4篇
  2012年   4篇
  2011年   7篇
  2010年   8篇
  2009年   7篇
  2008年   17篇
  2007年   11篇
  2006年   3篇
  2005年   9篇
  2004年   7篇
  2003年   6篇
  2002年   8篇
  2001年   8篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   6篇
  1993年   2篇
  1991年   4篇
  1988年   1篇
  1986年   1篇
排序方式: 共有171条查询结果,搜索用时 671 毫秒
41.
42.
A technique for identifying non‐visible basaltic tephra‐rich horizons of Younger Dryas (YD)/Greenland Stadial (GS) 1 age in northeast Atlantic sediments using rapid, non‐destructive magnetic measurements is presented. Three high‐resolution marine sediment cores have been studied in an E–W transect across the Hebridean margin: St Kilda Basin (MD95‐2007), Barra Fan (MD95‐2006) and Rockall Trough (MD04‐2822). Magnetic susceptibilities and remanent magnetisations were measured at contiguous 1 cm resolution on bulk sediments. In all three cores, an interval with higher proportions of hard magnetic minerals coincides with a clearly defined peak in basaltic tephra shard (>250 µm) counts, which can be constrained to the early part of the YD/GS1 based on faunal climate proxies. Electron microprobe analyses of the magnetically distinct basaltic tephra interval, in all three cores, displays the same major element geochemistry as published for the Vedde basaltic (I Tab. 1), i.e. sourced from the Icelandic volcano Katla. The identification of transitional alkalic basaltic tephras within marine sediments could potentially be facilitated by magnetic analysis as a useful chronostratigraphic screening tool. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
43.
Tephras provide one of the most reliable methods of time control and synchronisation within Quaternary sequences. We report on the identification of two widespread rhyolitic tephras – the Kawakawa and Rangitawa tephras – preserved in extensive peat deposits on Chatham Island ~900 km east of New Zealand. The tephras, both products of supereruptions from the Taupo Volcanic Zone, occur as pale, fine‐ash dominated layers typically 10–150 mm thick. Mineralogically they are dominated by rhyolitic glass, together with subordinate amounts of quartz, feldspar, hypersthene, hornblende, Fe–Ti oxides and zircon. Phlogopite/biotite was identified additionally in Rangitawa Tephra. Ages for each tephra were obtained via mineralogical and major element glass composition‐based correlation with well‐dated equivalent deposits on mainland New Zealand, and we also obtained a new zircon fission‐track age for Rangitawa Tephra (350 ± 50 ka) on Chatham Island. Both tephras were erupted at critical times for palaeoenvironmental reconstructions in the New Zealand region: the Kawakawa at ca. 27 cal. ka, near the beginning of the ‘extended’ LGM early in marine isotope stage (MIS) 2; and the Rangitawa at ca. 350 ka near the end of MIS 10. The time constraints provided by the tephras demonstrate that Chatham Island peats contain long‐distance pollen derived from mainland New Zealand, which provides a reliable proxy for identifying glacial–interglacial climate conditions, in this case during the MIS 11–10 and MIS 2–1 cycles. The two tephras thus provide important chronostratigraphic tie‐points that facilitate correlation and synchronisation not only across the Quaternary deposits of the Chatham Islands group but also with climatically significant terrestrial and marine records in the wider New Zealand region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
44.
Nine tephra layers in marine sediment cores (MD99‐2271 and MD99‐2275) from the North Icelandic shelf, spanning the Late Glacial and the Holocene, have been investigated to evaluate the effectiveness of methods to detect tephra layers in marine environments, to pinpoint the stratigraphic level of the time signal the tephra layers provide, and to discriminate between primary and reworked tephra layers in a marine environment. These nine tephra layers are the Borrobol‐like tephra, Vedde Ash, Askja S tephra, Saksunarvatn ash, and Hekla 5, Hekla 4, Hekla 3, Hekla 1104 and V1477 tephras. The methods used were visual inspection, magnetic susceptibility, X‐ray photography, mineralogical counts, grain size and morphological measurements, and microprobe analysis. The results demonstrate that grain size measurements and mineralogical counts are the most effective methods to detect tephra layers in this environment, revealing all nine tephra layers in question. Definition of the tephra layers revealed a 2–3 cm diffuse upper boundary in eight of the nine tephra layers and 2–3 cm diffuse lower boundary in two tephra layers. Using a multi‐parameter approach the stratigraphic position of a tephra layer was determined where the rate of change of the parameters tested was the greatest compared with background values below the tephra. The first attempt to use grain morphology to distinguish between primary and reworked tephra in a marine environment suggests that this method can be effective in verifying whether a tephra layer is primary or reworked. Morphological measurements and microprobe analyses in combination with other methods can be used to identify primary tephra layers securely. The study shows that there is a need to apply a combination of methods to detect, define (the time signal) and discriminate between primary and reworked tephra in marine environments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
45.
46.
The Sarikavak Tephra from the central Galatean Volcanic Province (Turkey) represents the deposit of a complex multiple phase plinian eruption of Miocene age. The eruptive sequence is subdivided into the Lower-, Middle-, and Upper Sarikavak Tephra (LSKT, MSKT, USKT) which differ in type of deposits, lithology and eruptive mechanisms.The Lower Sarikavak Tephra is characterised by pumice fall deposits with minor interbedded fine-grained ash beds in the lower LSKT-A. Deposits are well stratified and enriched in lithic fragments up to >50 wt% in some layers. The upper LSKT-B is mainly reversely graded pumice fall with minor amounts of lithics. It represents the main plinian phase of the eruption. The LSKT-A and B units are separated from each other by a fine-grained ash fall deposit. The Middle Sarikavak Tephra is predominantly composed of cross-bedded ash-and-pumice surge deposits with minor pumice fall deposits in the lower MSKT-A and major pyroclastic flow deposits in the upper MSKT-B unit. The Upper Sarikavak Tephra shows subaerial laminated surge deposits in USKT-A and subaqueous tephra beds in USKT-B.Isopach maps of the LSKT pumice fall deposits as well as the fine ash at the LSKT-A/B boundary indicate NNE–SSW extending depositional fans with the source area in the western part of the Ovaçik caldera. The MSKT pyroclastic flow and surge deposits form a SW-extending main lobe related to paleotopography where the deposits are thickest.Internal bedding and lithic distribution of the LSKT-A result from intermittent activity due to significant vent wall instabilities. Reductions in eruption power from (partial) plugging of the vent produced fine ash deposits in near-vent locations and subsequent explosive expulsion of wall rock debris was responsible for the high lithic contents of the lapilli fall deposits. A period of vent closure promoted fine ash fall deposition at the end of LSKT-A. The subsequent main plinian phase of the LSKT-B evolved from stable vent conditions after some initial gravitational column collapses during the early ascent of the re-established eruption plume. The ash-and-pumice surges of the MSKT-A are interpreted as deposits from phreatomagmatic activity prior to the main pyroclastic flow formation of the MSKT-B.  相似文献   
47.
Three layers of volcanic tephra, sampled from ODP 1143 Site in the South China Sea,were observed at the mcd depth of 5.55 m, 42.66 m, and 48.25 m, and named, in this paper, lay ers of A, B, and C, respectively. All of these tephra layers have an average thickness of ca. 2 cm.They were constrained in age of ca. 0.070 Ma, ca. 0.80 Ma, and ca. 1.00 Ma, respectively, by the microbiostratigraphy data. These tephra layers were predominated by volcanic glass shards with a median grain size of 70-75 μm in diameter. Major chemical compositions analyzed by EMPA and comparison with the previous data from other scatter areas suggest that these three layers of tephra can correspond to the three layers of Toba tephra, YTT, OTT, and HDT, respectively, erupt ing during the Quaternary. The occurrence of these tephra layers in the South China Sea implies that the Toba eruptions often occurred in the summer monsoon seasons of the South China Sea during the Quaternary, and that the strength of eruptions was probably stronger than that previously estimated.  相似文献   
48.
Lahar-Triggering Mechanisms and Hazard at Ruapehu Volcano,New Zealand   总被引:1,自引:0,他引:1  
Lecointre  Jerome  Hodgson  Katy  Neall  Vincent  Cronin  Shane 《Natural Hazards》2004,31(1):85-109
Late Holocene volcanic activity at Ruapehu has been characterizedby the generation of small (<105 m3) to very large (>107 m3) lahars and repeated,small to medium (VEI 1-3) tephra-producing eruptions. The Onetapu Formation groupsall lahar deposits that accumulated during the last 2,000 years on the southeastern Ruapehu ring plain. The andesitic tephras are grouped within the Tufa Trig Formation and are intercalated within the laharic sequence. By correlating these two formations with new radiocarbon ages obtained on interbedded paleosols, we reconstruct a detailed volcanic history of Ruapehu for this period.Clast assemblages identified in the laharic sequences record thelithologies of synchronous tephras and rocks within the source region. These assemblages suggest a strong genetic link between the development of Crater Lake, the variation in eruptivestyles, and the production of lahars.Lahar-triggering mechanisms include: (1) flank collapse ofhydrothermally altered and unstable portions of the cone; (2) phreatic and phreatomagmatic eruptions favoring the generation of snow-rich slurries and hyperconcentrated stream flows; (3) suddenCrater Lake rim collapse, releasing large amounts of water inducing debris flows; and (4) eruptions that generate large volumes of tephra on snow-covered slopes, later remobilized by heavy rain.Two major lahars in the Onetapu sequence had a volume 4 × 107 m3, roughly 1 to 2 orders of magnitude larger than the 1953event leading to the Tangiwai disaster (151 casualties). One of these lahars crossed over a lowinterfluve currently separating the Whangaehu River from a stream feeding the Tongariro River,sometime since peat accumulated between AD 1400 and AD 1660. A repetition of such a large-scaleevent would have devastating consequences on the infrastructure, economy and environment withinthe distal areas of the two catchments. The 1995–1996 eruptions were a timely reminder ofthe hazards posed by the volcano.  相似文献   
49.
The age of the Rockland tephra, which includes an ash-flow tuff south and west of Lassen Peak in northern California and a widespread ash-fall deposit that produced a distinct stratigraphic marker in western North America, is constrained to 565,000 to 610,000 yr by 40Ar/39Ar and U-Pb dating. 40Ar/39Ar ages on plagioclase from pumice in the Rockland have a weighted mean age of 609,000 ± 7000 yr. Isotopic ages of spots on individual zircon crystals, analyzed by the SHRIMP-RG ion microprobe, range from ∼500,000 to ∼800,000 yr; a subpopulation representing crystal rims yielded a weighted-mean age of 573,000 ± 19,000 yr. Overall stratigraphic constraints on the age are provided by two volcanic units, including the underlying tephra of the Lava Creek Tuff erupted within Yellowstone National Park that has an age of 639,000 ± 2000 yr. The basaltic andesite of Hootman Ranch stratigraphically overlies the Rockland in the Lassen Peak area and has 40Ar/39Ar ages of 565,000 ± 29,000 and 565,000 ± 12,000 yr for plagioclase and groundmass, respectively. Identification of Rockland tephra in ODP core 1018 offshore of central California is an important stratigraphic age that also constrains the eruption age to between 580,000 and 600,000 yr.  相似文献   
50.
火山灰的提取及测试技术   总被引:6,自引:0,他引:6  
同一次火山爆发产生的火山灰 ,能在广阔的区域内形成等时标志层 ,成为地层定年和对比的极有价值的工具。文中介绍了提取肉眼不可见火山灰的 4种方法 :烧失法、稀碱法、重液浮选法和酸化法 ,还介绍了火山玻璃的显微镜下识别技术及电子探针测试技术。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号