首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   286篇
  免费   55篇
  国内免费   56篇
测绘学   10篇
大气科学   56篇
地球物理   107篇
地质学   139篇
海洋学   37篇
综合类   17篇
自然地理   31篇
  2024年   1篇
  2023年   5篇
  2022年   8篇
  2021年   10篇
  2020年   16篇
  2019年   18篇
  2018年   11篇
  2017年   12篇
  2016年   17篇
  2015年   9篇
  2014年   17篇
  2013年   20篇
  2012年   26篇
  2011年   16篇
  2010年   18篇
  2009年   19篇
  2008年   22篇
  2007年   14篇
  2006年   12篇
  2005年   19篇
  2004年   10篇
  2003年   17篇
  2002年   13篇
  2001年   13篇
  2000年   8篇
  1999年   10篇
  1998年   12篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1990年   1篇
  1988年   1篇
排序方式: 共有397条查询结果,搜索用时 968 毫秒
51.
The New England and Mid‐Atlantic regions of the Northeast United States have experienced climate‐induced increases in both the magnitude and frequency of floods. However, a detailed understanding of flood seasonality across these regions, and how flood seasonality may have changed over the instrumental record, has not been established. The annual timing of river floods reflects the flood‐generating mechanisms operating in a basin, and many aquatic and riparian organisms are adapted to flood seasonality, as are human uses of river channels and flood plains. Changes in flood seasonality may indicate changes in flood‐generating mechanisms, and their interactions, with important implications for habitats, flood plain infrastructure, and human communities. I applied a probabilistic method for identifying flood seasons at a monthly resolution for 90 Northeast U.S. watersheds with natural, or near‐natural, flood‐generating conditions. Historical trends in flood seasonality were also investigated. Analyses were based on peaks‐over‐threshold flood records that have, on average, 85 years of data and three peaks per year—thus providing more information about flood seasonality than annual maximums. The results show rich detail about annual flood timing across the region with each site having a unique pattern of monthly flood occurrence. However, a much smaller number of dominant seasonal patterns emerged when contiguous flood‐rich months were classified into commonly recognized seasons (e.g., Mar–May, spring). The dominant seasonal patterns identified by manual classification were corroborated by unsupervised classification methods (i.e., cluster analyses). Trend analyses indicated that the annual timing of flood‐rich seasons has generally not shifted over the period of record, but 65 sites with data from 1941 to 2013 revealed increased numbers of June–October floods—a trend driving previously documented increases in Northeast U.S. flood counts per year. These months have been historically flood‐poor at the sites examined, so warm‐season flood potential has increased with possible implications for aquatic and riparian organisms.  相似文献   
52.
Coastal wetlands represent an ecotone between ocean and terrestrial ecosystems, providing important services, including flood mitigation, fresh water supply, erosion control, carbon sequestration, and wildlife habitat. The environmental setting of a wetland and the hydrological connectivity between a wetland and adjacent terrestrial and aquatic systems together determine wetland hydrology. Yet little is known about regional‐scale hydrological interactions among uplands, coastal wetlands, and coastal processes, such as tides, sea level rise, and saltwater intrusion, which together control the dynamics of wetland hydrology. This study presents a new regional‐scale, physically based, distributed wetland hydrological model, PIHM‐Wetland, which integrates the surface and subsurface hydrology with coastal processes and accounts for the influence of wetland inundation on energy budgets and evapotranspiration (ET). The model was validated using in situ hydro‐meteorological measurements and Moderate Resolution Imaging Spectroradiometer (MODIS) ET data for a forested and herbaceous wetland in North Carolina, USA, which confirmed that the model accurately represents the major wetland hydrological behaviours. Modelling results indicate that topographic gradient is a primary control of groundwater flow direction in adjacent uplands. However, seasonal climate patterns become the dominant control of groundwater flow at lower coastal plain and land–ocean interface. We found that coastal processes largely influence groundwater table (GWT) dynamics in the coastal zone, 300 to 800 m from the coastline in our study area. Among all the coastal processes, tides are the dominant control on GWT variation. Because of inundation, forested and herbaceous wetlands absorb an additional 6% and 10%, respectively, of shortwave radiation annually, resulting in a significant increase in ET. Inundation alters ET partitioning through canopy evaporation, transpiration, and soil evaporation, the effect of which is stronger in cool seasons than in warm seasons. The PIHM‐Wetland model provides a new tool that improves the understanding of wetland hydrological processes on a regional scale. Insights from this modelling study provide benchmarks for future research on the effects of sea level rise and climate change on coastal wetland functions and services.  相似文献   
53.
张剑明  廖玉芳  蒋元华 《气象》2017,43(10):1186-1197
本文基于气象观测资料、再分析资料和国家气候中心提供的百项气候系统指数集,利用气候事件机理诊断和气候统计等方法,重点从降水背景、大尺度环流异常及外强迫因子对气候异常影响,分析2015 年湖南罕见冬汛及其成因机制,本文对2015年湖南冬汛及其可能成因进行了分析,结果表明:(1)2015年11月湖南省平均降水量偏多1.6倍,为1961年以来同期第一高位,其中湘东南部分地区降水量超过250 mm,出现气象洪涝。(2)在湖南11月降水处于偏多的年代际背景下,大气环流异常是导致湖南发生冬汛的最直接的原因,2015年11月西太平洋副热带高压偏强、偏西,引导来自印度洋、太平洋地区水汽向东亚地区输送,加上西路冷空气影响导致11月降水异常偏多。(3)在PDO暖位相时发生的El Ni〖AKn~D〗o事件可能是湖南降水异常的重要外强迫条件,赤道中东太平洋和印度洋海表温度异常偏高,导致该区域上空出现强的异常上升运动,而在海洋性大陆区域上空出现了一个异常下沉气流区,这有利于西太平洋副热带高压的加强、西伸,在东亚低纬地区上空出现异常下沉气流区,中纬地区上空出现异常上升气流区,造成该区域强烈的异常辐合,导致该地区持续阴雨天气。  相似文献   
54.
Based on core observations, well logs and test results of siderite-bearing mudstone from the Benxi Formation to the Member 2 of the Shanxi Formations in the Linxing block, northeastern Ordos Basin, a logging identification model for siderite-bearing mudstone (key layer) was established. The porosity characteristics and sealing property were quantitatively evaluated by logging data. Sedimentary control on the formation of multi-superimposed gas-bearing system in the development of key layers in the sequence framework was also discussed. The results showed that the siderite-bearing mudstone has obvious logging response characteristics, e.g., high photoelectric absorption cross-section index (PE), high density (DEN), high amplitude natural gamma ray (GR), low acoustic (AC), low resistivity (M2RX) and low neutron porosity (CNCF). The quantitatively evaluated results of the porosity characteristics and sealing property for the key layer showed that the key layer has the characteristics of low porosity (with an average of 1.20 percent), low permeability (with an average of 2.29 × 10−8μm2), and high breakthrough pressure (with an average of 12.32 MPa) in the study area. This layer acts as an impermeable gas barrier in a multi-superimposed gas system. The results also indicated that the material composition of the multi-superimposed gas-bearing system can be established by the sequence stratigraphic framework. The sedimentary evolution results in a cyclic rhythm of material composition vertically. The spatial distribution of the corresponding transgressive event layer near the maximum flooding surface (MFS) in the sequence framework restricts the spatial distribution of the key layer with high breakthrough pressure and low porosity, which constitutes the gas-bearing system boundary. The siderite-bearing mudstone formed near the MFS in the second-order sequence and constitutes a stable comparison of the first-order gas-bearing system boundary, which has a wide range of regional distribution and stable thickness. The siderite-bearing mudstone formed near the MFS in the third-order sequence is often incompletely preserved due to the late (underwater) diversion channel erosion and cutting. This layer forms the coal-bearing reservoirs, which we termed as a second-order gas-bearing system in adjacent third-order sequences to form a uniform gas-bearing system.  相似文献   
55.
郑贺梅  刘鹏程  郑舰 《现代地质》2015,29(6):1467-1474
以胜利油田A区块特超稠油油藏为目标区块,自主研发了高温高压二维比例物理模型,研究了不同开发阶段水平井蒸汽驱油机理,开展了油藏压力、井底干 度、注汽强度对水平井蒸汽驱的效果影响的研究。物模实验结果显示,蒸汽驱整个过程分为三个阶段:存水回采期、汽驱受效期、蒸汽突破期。存水回采期蒸汽腔向水平方向扩展,以水平驱替方式为主 ;汽驱受效期蒸汽腔向垂向和水平方向扩展,以水平驱替方式为主,纵向泄油为辅;后期蒸汽突破,蒸汽腔继续向上方扩展,以纵向泄油为主,实现油层整体动用。5 MPa时转蒸汽驱的采出程度高于7 MPa时转蒸汽驱的采出程度;蒸汽驱的井底蒸汽干度应不低于0.4,蒸汽干度越高,水平井蒸汽驱的开发效果越好;注汽强度为1.9 t/(d·ha·m)时温度场最为发育。同时,在高压下提高干度可实现水 平井蒸汽驱的有效开发。以上的实验结果较好地指导了胜利油田A区块特超稠油油藏水平井蒸汽驱开发,取得了明显的开发效果,该研究对于类似稠油和超稠油油藏水平井蒸汽驱开发具有重要的指导意义 。  相似文献   
56.
陈祖华 《现代地质》2015,29(4):950-957
CO2驱是一种能大幅度提高原油采收率的三次采油技术,国内该项技术的研究和应用起步较晚,多以先导试验为主。苏北盆地溱潼凹陷经过10余年的探索,已经在5个低渗油田开展了CO2驱先导试验和推广应用,针对这5个油藏利用一维细管模拟和油藏数值模拟方法开展了注气时机、段塞尺寸和注气部位的研究,并应用典型实例进行了分析,认为先期注入提高混相压力,可更有效地缩短两相区过渡带,增加油相中溶解的CO2含量,降低油相粘度和油气界面张力,进而提高混相程度,更有利于驱油;采用大尺寸段塞可加大CO2波及区域,较好地保持地层能量,从而提高油井见效率,增强驱替效果;高部位注气可有效地抑制重力超覆,减少CO2气体过早地产出和突破的机会。就苏北盆地低渗油藏而言,采用先期注入、大尺寸段塞和高部位注气不失为一种成熟有效的提高采收率方法。  相似文献   
57.
华南前汛期广东暴雨分区动力特征及特大暴雨分析   总被引:5,自引:0,他引:5  
依据2009-2013 年华南地区72 测站逐日降水资料,利用 REOF方法、合成分析等方法,分析华南前汛期(4-6 月)暴雨时空特征。结果表明:暴雨降水量占总降水量34.6%,年暴雨日数170天以上。REOF方法分析获得华南前汛期5个暴雨模态区, 其中广东两模态区中心荷载强于其余3个区,降雨更多,雨强更大。合成分析显示,广东北部暴雨区受西风带系统影响为主, 暴雨中尺度系统为气旋及变形场锋生。沿海暴雨区受副热带系统控制为主,中尺度系统主要为低空急流,输送气旋式切变和旋转涡度,及低空速度辐合, 并提供自海上来的充沛水汽,造成沿海区暴雨远强于北部区。 近5 a前汛期广东24 h累积降雨量大于200mm的大暴雨有14次,均发生在沿海暴雨模态区。两区暴雨机制分别为西风带中尺度低值系统锋生降水,和副热带系统暖区登陆地形作用降水。海温SST方面沿海暴雨区环境较北部暴雨区具有更大平均水汽潜热量,含更充沛水汽。而感热场反映沿海暴雨区从下垫面吸收更多热能量,更有利于不稳定暴雨过程维持与加强。对2010 年6 月9 -12 日广东沿海上川岛持续性特大暴雨分析显示,东北阻塞高压强盛与副热带高压西伸北进势均力敌配置,水汽通道和水汽通量散度輻合异常强盛, 湿位涡湿正压项和湿斜压项均构成有利于垂直涡度增长环境, 这些因子维持了特大暴雨过程。  相似文献   
58.
The flooding susceptibility of alluvial fans in the Southern Apennines has long been neglected. To partly address this oversight, we focus on the region of Campania which contains highly urbanized piedmont areas particularly vulnerable to flooding. Our findings are based on stratigraphic analysis of the fans and morphometric analysis of the basin‐fan systems. Using geomorphological analysis we recognized active alluvial fans while stratigraphic analysis together with statistical analysis of the morphometric variables was used to classify the fans in terms of the transport process involved. The results indicate that in the geological context examined, the best discrimination between debris flow (Df) and water flood (Wf) processes is achieved by means of two related variables, one for the basin (feeder channel inclination, Cg) and one for the fan (fan length, Fl). The probability that an unclassified fan belongs to group Wf is computed by applying a logistic function in which a P value exceeding 0.5 indicates that a basin/fan system belongs to group Wf. This important result led to the classification of the entire basin/fan system data. As regards process intensity, debris flow‐dominated fans are susceptible to the occurrence of flows with high viscosity and hence subject to more severe events than water flood‐dominated fans. Bearing this in mind, the data gathered in this study allow us to detect where alluvial fan flooding might occur and give information on the different degrees of susceptibility at a regional scale. Regrettably, urban development in recent decades has failed to take the presence of such alluvial fans into account due to the long recurrence time (50–100 years) between floods. This paper outlines the distribution of such susceptibility scenarios throughout the region, thereby constituting an initial step to implementing alluvial fan flooding control and mitigation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
59.
Levee effects upon flood levels: an empirical assessment   总被引:1,自引:0,他引:1  
This study used stream gauge records to assess the impact of levees on flood levels, providing an empirical test of theoretical and model predictions of the effects on local flood response. Focusing upon a study area in Illinois and Iowa for which levee records were available, we identified 203 gauges with ≥ 50 years hydrological record, including 15 gauges where a levee was constructed during the period of record. At these sites, step‐change analysis utilizing regression residuals tested levee‐related stage changes and levels of significance and quantified the magnitudes of stage changes. Despite large differences in stream sizes, levee alignments, and degree of floodplain constriction, the post‐levee rating‐curve adjustments showed consistent signatures. For all the study sites, stages for below bankfull (non‐flood) conditions were unaffected by levee construction. For above bankfull (flood) conditions, stages at sites downstream of their associated levees also were statistically indistinguishable before versus after levee construction. However, at all sites upstream of levees or within leveed reaches, stages increased for above bankfull conditions. These increases were abrupt, statistically significant, and generally large in magnitude – ranging up to 2.3 m (Wabash River at Mt. Carmel, IL). Stage increases began when discharge increased above bankfull flow and generally increased in magnitude with discharge until the associated levee(s) were overtopped. Detailed site assessments and supplementary data available from some sites helped document the dominant mechanisms by which levees can increase flood levels. Levee construction reduces the area of the floodplain open to storage of flood waters and reduces the width of the floodplain open to conveyance of flood flow. Floodplain conveyance often is underestimated or ignored, but Acoustic Doppler Current Profiler (ADCP) measurements analysed here confirm previous studies that up to 70% or more of the total discharge during large floods (~3% chance flood) can move over the floodplain. Upstream of levees and levee‐related floodplain constriction, backwater effects reduce flow velocities relative to pre‐levee conditions and, thus, increase stages for a given discharge. The empirical results here confirm a variety of theoretical predictions of levee effects but suggest that many one‐dimensional model‐based predictions of levee‐related stage changes may underestimate actual levee impacts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
60.
收集了1995—2007年中原油田濮阳地区各油田的注水开采等质量迁移资料,利用图示法研究发现油田注水与区域地震活动之间存在一定联系,并定量计算了油田注水引起的重力变化量。结合重力复测资料对油田注水引起的重力场变化和该地区地震之间的关系进行了初步研究,其注采作业引起的重力场变化在±0.1~10×10-8 m.s-2之间,并随着油田中心区域的距离而衰减。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号