首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11530篇
  免费   1617篇
  国内免费   1513篇
测绘学   6050篇
大气科学   726篇
地球物理   1586篇
地质学   4152篇
海洋学   727篇
天文学   78篇
综合类   830篇
自然地理   511篇
  2024年   69篇
  2023年   275篇
  2022年   439篇
  2021年   606篇
  2020年   399篇
  2019年   578篇
  2018年   409篇
  2017年   536篇
  2016年   517篇
  2015年   577篇
  2014年   868篇
  2013年   660篇
  2012年   702篇
  2011年   690篇
  2010年   562篇
  2009年   573篇
  2008年   596篇
  2007年   525篇
  2006年   466篇
  2005年   436篇
  2004年   438篇
  2003年   466篇
  2002年   401篇
  2001年   371篇
  2000年   287篇
  1999年   254篇
  1998年   253篇
  1997年   243篇
  1996年   207篇
  1995年   171篇
  1994年   188篇
  1993年   165篇
  1992年   151篇
  1991年   179篇
  1990年   145篇
  1989年   120篇
  1988年   29篇
  1987年   18篇
  1986年   14篇
  1985年   13篇
  1984年   12篇
  1983年   6篇
  1982年   8篇
  1981年   3篇
  1980年   4篇
  1979年   6篇
  1978年   4篇
  1974年   3篇
  1954年   4篇
  1948年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
王冬梅 《测绘》2020,43(2):85-89
无人机倾斜摄影测量可以获得高精度的实景三维模型,本文介绍了无人机倾斜摄影测量的关键技术,按照无人机倾斜摄影实景三维模型测图作业流程,在河南范县利用无人机及Leica RCD30倾斜相机进行倾斜摄影,以Context Capture Center软件为平台进行空三加密与生成实景三维模型,然后在EPS平台上裸眼立体测绘1:500地形图。最后,从空三加密精度、像片控制点精度与测图精度三方面进行精度分析,结果表明:本次无人机倾斜摄影测量达到1:500地形图精度要求,相关方法可供参考。  相似文献   
52.
严慧敏 《测绘通报》2020,(1):115-119
随着信息化社会的到来,现代水利测绘已经由传统测绘向信息化测绘发展,无人机技术应用于测绘行业推进了信息化测绘进程。本文探讨了如何有效利用无人机技术解决测绘领域在山区遇到的问题。固定翼无人机能及时获取地面数字正射影像数据,捕获裸露地面的平面和高程,但是无法获取植被覆盖下的地表高程信息,因此,本文通过机载激光雷达获取植被覆盖下的LiDAR点云数据;将二者数据相结合,再通过EPS软件生成三维地表模型,可以快速获取任何测区地物和地形数据,不仅提高了工作效率,还降低了外业劳动强度。  相似文献   
53.
我国越来越重视农村的发展,目前各地都在积极开展农村不动产权籍调查工作,该工作时间紧迫,对数据精度要求较高。在农村不动产权籍调查中,本文针对传统外业全野外调绘所带来的低效率问题,提出了利用旋翼无人机载激光雷达进行调绘的方法,并且通过实例验证了该方法相较于传统测绘方式能够提高测绘的效率且测绘精度符合最终要求。  相似文献   
54.
三维激光扫描技术是目前最先进的测绘数据获取方式之一,它采用非接触主动测量方式直接获取高精度的三维数据,能够对任意物体进行扫描,快速将现实世界的信息转换成计算机可处理的三维数据信息,与传统测绘技术相比,除了速度快、精度高的优势外,更有获取对象信息更全面、提供的测绘成果更丰富更直观的突出技术特点。本文以宁化天鹅洞改造测量项目为例,探讨了三维激光扫描技术在地下溶洞改造测量工作中的应用原理、工作流程、成果类型及其技术优势,希望对同类工程项目应用有一定借鉴作用。  相似文献   
55.
与常规三维地震勘探相比,全数字高密度地震勘探采用高横纵比、宽方位观测系统,使用单点数字检波器接收。宽方位地震勘探有利于高陡构造和复杂断块成像,但存在各向异性问题,而单点数字检波器地震信号频带宽、保幅性好、噪声强。为了充分发挥全数字高密度地震资料优势,克服其缺点,必须将宽频、宽方位处理技术运用到煤炭高密度三维地震数据处理中,以提升数据处理效果。以淮北矿区全数字高密度地震资料为基础,针对淮北矿区地质构造复杂特点,以叠前保幅去噪、振幅补偿、OVT处理技术以及全方位角偏移成像技术为重点,开展了煤炭全数字高密度地震资料的宽频、宽方位处理技术研究。结果表明:保幅去噪在几乎不损伤有效信号的前提下实现了对噪声的有效压制,振幅补偿恢复了地震信号高低频能量的损失,宽方位处理不仅消除了各向异性影响,改善了成像效果,还获得了丰富的叠前数据。宽频宽方位处理技术是全数字高密度地震资料处理的必要手段,其处理成果比常规处理成果频带更宽,对复杂构造成像更好,分辨率更高,能够实现煤田复杂地质条件地震资料精细成像。   相似文献   
56.
地震波形分类技术具有统计地震信号总体变化和反映这种变化分布规律的特点,是地震属性分析技术的重要延伸,在地质异常体解释方面具有良好的应用效果。高密度三维地震资料具有高信噪比,高分辨率和高保真度的特点,尝试利用波形分类技术对高密度三维地震资料反映的煤层赋存状态、岩浆岩侵入区进行预测,并对陷落柱解释方法进行了研究。井下巷道实际揭露和钻孔验证结果表明:波形分类方法解释的地质异常体精度高、圈定范围准确,可以为煤矿安全开采提供精准的地质资料。   相似文献   
57.
北山造山带中部(甘肃段)花岗岩成因及构造背景   总被引:2,自引:2,他引:0  
白荣龙  刘显凡  周慧玲 《岩石学报》2020,36(6):1731-1754
北山造山带中部花岗岩体以陶勒努图洪岩体和跃进山南岩体为代表,本文对这两个岩体进行了LA-ICP-MS锆石U-Pb定年、全岩地球化学和原位锆石Lu-Hf同位素分析,结果表明:岩体成岩年龄分别为410±2. 8Ma、427±2. 5Ma;主量元素呈现高硅、高钾钙碱性、准铝质-弱过铝质特征;微量元素表现为富集Th、Zr、Hf等及大离子亲石元素(Rb、U、K等),亏损Ba、Sr、Eu及高场强元素(Nb、Ta、P、Ti等);球粒陨石标准化稀土元素曲线呈轻稀土富集、重稀土亏损的右倾模式。综合分析认为跃进山南岩体属A型花岗岩,陶勒努图洪岩体属S型花岗岩。陶勒努图洪和跃进山岩体锆石ε_(Hf)(t)分别为-2. 90~-0. 12(平均值为-1. 53)、-1. 99~2. 82(平均值为0. 26),t_(DM2)分别为1. 41~1. 58Ga、1. 23~1. 54Ga。研究表明:陶勒努图洪黑云母花岗闪长岩岩浆源区主要为由元古界北山杂岩组成的以变质杂砂岩为主的古老地壳物质(含中基性岩石)部分熔融的产物,跃进山南二长花岗岩体可能在元古界北山杂岩组成的以变质杂砂岩为主的古老地壳物质重熔过程中有幔源岩浆的参与。在中志留世(427Ma)明水-小黄山洋已向南侧马鬃山-公婆泉弧之下俯冲至后期,板块后撤引发明水-旱山地体南缘弧后形成裂解环境导致幔源岩浆底侵,诱发地壳物质重熔形成花岗质岩浆,岩浆侵位形成跃进山南二长花岗岩体;至早泥盆世(410Ma),俯冲结束发生弧-陆碰撞造山导致地壳增厚,引发下地壳发生部分熔融产生的花岗质岩浆侵位形成陶勒努图洪岩体;两岩体是在早、晚古生代交接时段同一俯冲-碰撞构造背景下不同部位、不同亚构造环境下的产物。  相似文献   
58.
59.
为解决1:250万月球数字地质图在多单位协同编图过程中缺乏统一、规范的地质图符号、制图模板造成不同图件之间信息不统一的问题,通过ArcGIS平台,和其他矢量图形软件,参照我国第一幅1:250万月球地质图(虹湾幅)的符号,设计编制了一套月球地质图符号,其包含月球撞击坑物质、盆地建造、构造和岩石特性等地质信息.并建立了分类存储、可移植的符号库和统一的编图模板.该套标准化符号、符号库、编图模板有利于多单位共同规范的开展1:250万数字化月球地质图编图项目,提高编图效率,同时也为我国开展其他类地行星地质编图的国际合作,编制统一、规范化的地质图奠定基础.   相似文献   
60.
长白山景区旅游安全风险动态评价研究   总被引:1,自引:0,他引:1  
孙滢悦  杨青山  陈鹏 《地理科学》2019,39(5):770-778
以长白山景区旅游安全为研究对象,以鱼骨图、动态贝叶斯、GIS技术等为基本研究方法,从研究区自然环境、社会环境及责任人为3个方面出发,筛选景区致险因子,构建景区旅游安全风险危险性评价指标体系,利用动态贝叶斯方法综合构建景区旅游安全风险动态评价模型;并以实测数据及景区统计数据为依据,划分景区旅游安全风险评价的4个动态时段,综合实现景区旅游安全风险动态风险评价。研究结果表明:中等以上风险区域呈条带状分布;高风险区域与主要景点重合;长白山景区安全风险发生高概率的时段发生在第三个时段(12:00~14:00);较高概率发生分别在第二个时段(10:00~12:00)与第四个时段(14:00~16:00);中等概率发生较高的时段在第四个时段(14:00~16:00);较低概率发生在第一个时段(8:00~10:00)。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号