首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   10篇
  国内免费   8篇
测绘学   7篇
大气科学   18篇
地球物理   15篇
地质学   60篇
综合类   2篇
自然地理   28篇
  2024年   2篇
  2023年   5篇
  2022年   6篇
  2021年   12篇
  2020年   6篇
  2019年   7篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   10篇
  2014年   12篇
  2013年   14篇
  2012年   21篇
  2011年   9篇
  2010年   10篇
  2009年   6篇
  2008年   3篇
排序方式: 共有130条查询结果,搜索用时 312 毫秒
51.
选用由美国国家环境预报中心NCEP和美国国家大气研究中心NCAR联合开发的新一代中尺度数值模式WRF(Weather Research and Forecasting Model)模式,采用两重网格单向反馈嵌套的方法对扎陵湖和鄂陵湖区域的大气边界层特征进行数值模拟,并把湖泊水体下垫面替换为草地下垫面以设计另一组去除湖泊...  相似文献   
52.
青藏高原典型下垫面的土壤温湿特征   总被引:16,自引:4,他引:12  
杨健  马耀明 《冰川冻土》2012,34(4):813-820
利用中国科学院纳木错站、 珠峰站和藏东南站2007年土壤温湿度的观测资料, 分别分析了这3个不同下垫面下观测站的土壤温湿度分布的时空特征.结果显示:3个站土壤温度的年变化和年平均的日变化趋势基本相同, 与太阳辐射变化特征一致; 它们在冻结深度和冻结时间上差别较大; 下垫面特征、 土壤的冻结消融及其物理性质的差异使3个站表现出了不同的土壤湿度变化特征; 3个站均表现为在某一深度有一个高含水层, 土壤消融(冻结)使土壤湿度迅速增大(减小).  相似文献   
53.
冰湖溃决灾害是青藏高原地区主要的灾害之一。详细了解冰湖的面积和水量变化及其原因, 有助于更准确地确定其溃决的可能性和产生破坏的程度和范围。米堆冰湖为一个典型的冰碛物阻塞冰湖, 1988 年7 月15 日曾发生溃决。本研究利用1980 年1:5 万地形图和DEM、1988 年TM影像、2001 年IKONOS影像以及2001、2007、2009、2010 年ALOS影像, 提取冰湖溃决前后的面积变化, 结合野外实地测得的冰湖水深, 获得冰湖不同时期的水量及其变化。同时, 利用自动水位计, 监测湖泊相对水深的变化及其原因。结果显示, 米堆溃决前面积达到64×104 m2, 水量为699×104 m3, 溃决使得601.83×104 m3的水量溃出, 水位下降了17.18 m, 但溃决口并未达到冰湖最低处, 溃决后仍有97.17×104 m3的水量。近年来, 气温升高融水增加使得冰湖面积和水量不断增加, 按照目前的水量增加速率, 冰湖再次发生溃决的可能性较小, 而在由于其他原因使得冰湖发生堵塞或大量外来物质(冰川断裂、滑坡等)填充进冰湖时, 可能导致冰湖水位急剧上升, 再次发生溃决。  相似文献   
54.
为了解冰川微生物生长特点,分析了青藏高原木孜塔格冰川、玉珠峰冰川和扎当冰川可培养细菌在不同温度,及木孜塔格冰川可培养细菌在不同盐度和pH下的生长特性.木孜塔格冰川52%的可培养细菌不耐盐,只能在0%盐度下生长,38%的细菌可以在0%~4%/6%盐度培养基中生长,其余细菌可以在0%~1%/2%的盐度培养基中生长,且62%的细菌具有较广的pH值生长范围(pH 5~9);另外,38%的细菌只能在弱酸性(5%)或者只能在弱碱性(33%)培养基中生长. 3个冰川可培养细菌生长温度范围均为0~35℃,木孜塔格冰川最适生长温度≤20℃的细菌占其细菌总数的86%,而玉珠峰冰川和扎当冰川最适生长温度≤20℃的细菌则分别占其细菌总数的69%和53%.不同冰川具有不同最适生长温度的细菌的比例不同,同一冰川不同深度相同属类的细菌有相近的生长温度特征、耐盐度和耐酸碱特征.  相似文献   
55.
通过2007-2011年纳木错站人工积雪观测资料,对西藏纳木错流域MODIS两种积雪产品(MOD10A1和MOD10A2)进行了精度验证,分析了纳木错流域积雪累积和消融的空间差异,以及流域积雪覆盖率的时空变化;利用纳木错站人工积雪观测资料及自动气象站资料,分析了纳木错流域积雪要素(积雪深度、雪水当量、积雪密度)的时间变化及其与气候参数(气温、降水量、风速等)的关系.结果表明:纳木错流域MOD10A2数据的积雪识别精度(67.1%)高于MOD10A1(42.2%),总识别精度(73.0%)略低于MOD10A1数据(78.4%).纳木错流域积雪累积和消融存在空间差异,积雪在流域南部的念青唐古拉山脉最先累积,之后为流域东部,最后为流域西部;积雪消融的空间变化则相反.由此导致流域积雪日数南部最大、东部次之、西部及西北部最小.纳木错流域各积雪要素的年内变化存在双峰值特征,峰值分别出现在10-11月和1月,积雪在10-11月受降水和气温共同作用,12月至次年3月主要受气温影响.纳木错流域的平均积雪覆盖率为21.9%,受湖泊效应影响区域(主要为东部地区)达到50.6%,而其他区域仅为18.3%.同时,受湖泊效应影响,纳木错平均积雪深度、积雪水当量均显著大于周边地区.  相似文献   
56.
以青藏高原西南部塔若错的34cm浅湖芯为研究对象,对其沉积物样品进行总有机碳、无机碳、总氮、微量元素、正构烷烃含量及碳氮比等多项指标的分析测定。采用过剩210 Pb和137 Cs计年法对该湖芯进行了定年和沉积速率研究,获得了近300年的连续湖泊沉积环境序列。在明确了各指标气候环境指示意义的前提下,综合对比分析湖芯中各项气候环境指标,并结合定年结果重建了塔若错湖区近300年来的气候环境变化。结果表明:塔若错湖区气候环境变化可分为3个明显阶段:早期为1705~1778年,该地区气候环境温暖湿润,湖区植被广泛发育;中期为1778~1860年,湖区处于小冰期末次阶段,气候环境寒冷而湿润,植被发育受阻;后期为1860年至今,为小冰期结束后偏暖干化时期。其中,后期又可分为3个亚阶段:1860~1924年,湖区气候环境稍暖且干旱,植被稍有发育;1924~1969年,湖区气候环境呈现偏冷干特点,植被发育暂缓;1969年至今,湖区气候回暖,环境干旱化有所缓解,植被开始逐渐发育。在气候冷暖变化上,该湖芯记录与古里雅冰芯记录和青海湖湖泊沉积记录都有较好的可对比性,只是在起讫年代上存在一些差异。  相似文献   
57.
利用耦合化学过程的区域气候模式RegCM3,模拟研究3种主要人为排放气溶胶(硫酸盐、黑碳、有机碳)对东亚区域气候的影响.计算分析近20 a来3种气溶胶的时空分布、综合辐射强迫作用及其对地面气温和降水的影响.模拟结果表明:3种气溶胶冬夏季分布有所不同,冬季气溶胶大值区主要分布在南方地区,而夏季大值区北移;气溶胶短波辐射强迫在大气层顶和地面均为负值;气溶胶的加入对东亚地区地表气温有明显影响,冬季降温中心位于四川盆地,夏季降温大值区位于华北地区.气溶胶直接气候效应使得冬季东亚大部分地区降水减少,夏季东亚地区降水与中国南方地区夏季气溶胶浓度有较好的相关关系,中国东部雨带有南移趋势.  相似文献   
58.
王朋岭  周兵  韩荣青  孙冷  王遵娅  司东  孙丞虎 《气象》2012,38(4):472-479
本文基于实时和历史观测资料,利用气候统计和气候机理诊断方法,对2011年气候异常及成因进行总结分析。结果表明,全球海洋外源强迫和大气内部动力过程共同作用下的大气环流系统组合异常,是造成2011年中国大部地区降水异常偏少,温度明显偏高,呈现暖干型气候特征的主要原因。具体表现为,拉尼娜事件在2011年夏季短暂中断后,9月再次进入拉尼娜状态;西太平洋副热带高压在5月之前异常偏弱、偏东,致使长江中下游出现严重春旱,之后副热带高压有所加强,尤其在6月异常偏强,使长江中下游地区梅雨量偏多、旱涝急转;秋季副热带高压脊线偏北、中高纬度冷空气活动阶段性活跃,致使华西、黄淮地区秋雨异常偏多;热带印度洋海温演变经历负偶极型海温模态后,夏季转为全区一致型暖海温;2010/2011年东亚冬季风偏强,2011年南海夏季风爆发偏早、结束偏晚,东亚夏季风正常偏弱;西北太平洋和南海热带气旋生成数量处于偏少的年代际时段,2011年热带气旋生成数量偏少。  相似文献   
59.
对普若岗日冰芯上部7.5 m样品中不溶微粒的元素含量进行了测定,分析了不溶微粒中Na、K、Mg、Fe、Zn和Al等元素近30年来的含量及相对含量变化特征.通过普若岗日冰芯中不溶微粒的元素含量、元素组分对相对含量等多参数的变化特征与青藏高原腹地降水量及温度记录的对比分析发现,冰芯不溶微粒中元素地球化学参数的变化与源区气候环境的演变具有较好的一致性.因此可以认为,冰芯中不溶微粒的元素地球化学特征能够作为指示区域气候环境演变的指标.  相似文献   
60.
青藏高原唐古拉哈日钦冰芯表层和深层可培养细菌特征   总被引:1,自引:1,他引:0  
对唐古拉哈日钦冰芯表层0.04~3.04 m及深层127.44~130.36 m中可培养细菌进行了对比研究。发现表层和深层可培养细菌数没有表现出显著差异性,表层冰芯中可培养细菌数为0~9.8×103 CFU·mL-1,略高于深层冰芯的0~8.4×103 CFU·mL-1。表层冰芯中微生物总数为103~106 cells·mL-1,深层冰芯中微生物总数为102~103 cells·mL-1。冰芯中可培养细菌属于Firmicutes(厚壁菌门)、Proteobacteria(变形菌门)、Actinobacteria(放线菌门)、Bacteroidetes(拟杆菌门)和Deinococcus-Thermus(异常球菌门) 5大类。但表层和深层可培养细菌属于不同的优势门,表层为Proteobacteria(38%),深层为Firmicutes(42%)。表层和深层优势属均为Bacillus(芽孢杆菌属),占比分别为18%和29%。已有研究表明哈日钦冰芯98.8 m达到了公元1000年的历史记录,因此对比千年尺度上可培养细菌数量及多样性的差异,能够为进一步发掘新基因,丰富微生物多样性,为了解可培养细菌的进化历史奠定基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号