首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   835篇
  免费   345篇
  国内免费   317篇
测绘学   73篇
大气科学   334篇
地球物理   532篇
地质学   143篇
海洋学   77篇
天文学   208篇
综合类   47篇
自然地理   83篇
  2024年   2篇
  2023年   7篇
  2022年   17篇
  2021年   16篇
  2020年   16篇
  2019年   23篇
  2018年   9篇
  2017年   16篇
  2016年   6篇
  2015年   17篇
  2014年   22篇
  2013年   26篇
  2012年   35篇
  2011年   39篇
  2010年   34篇
  2009年   64篇
  2008年   61篇
  2007年   114篇
  2006年   141篇
  2005年   76篇
  2004年   61篇
  2003年   50篇
  2002年   59篇
  2001年   37篇
  2000年   58篇
  1999年   66篇
  1998年   74篇
  1997年   65篇
  1996年   57篇
  1995年   59篇
  1994年   56篇
  1993年   49篇
  1992年   29篇
  1991年   24篇
  1990年   12篇
排序方式: 共有1497条查询结果,搜索用时 31 毫秒
61.
Yu  Yang  Dong  Changming  Shan  Haixia  Zou  Bin 《中国海洋湖沼学报》2020,38(6):1632-1639
Journal of Oceanology and Limnology - Intensity variations of the SE-NW-oriented tropical cyclones (TC) in the East China Sea (ECS) passing over the Kuroshio are studied using multi-year...  相似文献   
62.
SAR图像对地定位的严密共线方程模型   总被引:3,自引:0,他引:3  
尤红建  丁赤飚  付琨 《测绘学报》2007,36(2):158-162
SAR图像对地定位是解决SAR遥感信息在哪里的根本问题,它是遥感应用和处理的重要步骤。作者在分析现有几种SAR图像对地定位模型的基础上,根据SAR成像的严格几何关系导出SAR图像对地定位的严密共线方程模型。首先根据斜距图像的近地点斜距和远地点斜距推导中心投影等效焦距的计算公式,然后详细推导并给出斜距图像转化成严密中心投影图像时涉及的图像改化公式,最后根据实际星载SAR图像定位的精度对比,证明严密共线方程模型是可行的,而且其定位精度要明显优于传统的近似共线方程模型。  相似文献   
63.
Prediction Test for the Two Extremely Strong Solar Storms in October 2003   总被引:2,自引:0,他引:2  
In late October and early November 2003, a series of space weather hazard events erupted in solar-terrestrial space. Aiming at two intense storm (shock) events on 28 and 29 October, this paper presents a Two-Step method, which combines synoptic analysis of space weather–`observing’ and quantitative prediction – ‘palpating’, and uses it to test predictions. In the first step, ‘observing’, on the basis of observations of the source surface magnetic field, interplanetary scintillation (IPS) and ACE spacecraft, we find that the propagation of the shock waves is asymmetric and northward relative to the normal direction of their solar sources due to the large-scale configuration of the coronal magnetic fields, and the Earth is located near the direction of the fastest speed and greatest energy of the shocks. Being two fast ejection shock events, the fast explosion of extremely high temperature and strong magnetic field, and background solar wind velocity as high as 600 and 1000 km s−1, are also helpful to their rapid propagation. According to the synoptic analysis, the shock travel times can be estimated as 21 and 20 h, which are close to the observational results of 19.97 and 19.63 h, respectively. In the second step, ‘palpating’, we adopt a new membership function of the fast shock events for the ISF method. The predicted results here show that for the onset time of the geomagnetic disturbance, the relative errors between the observational and the predicted results are 1.8 and 6.7%, which are consistent with the estimated results of the first step; and for the magnetic disturbance magnitude, the relative errors between the observational and the predicted results are 4.1 and 3.1%, respectively. Furthermore, the comparison among the predicted results of our Two-Step method with those of five other prevailing methods shows that the Two-Step method is advantageous in predicting such strong shock event. It can predict not only shock arrival time, but also the magnitude of magnetic disturbance. The results of the present paper tell us that understanding the physical features of shock propagation thoroughly is of great importance in improving the prediction efficiency.  相似文献   
64.
We describe how a local plasma structure can be changed by a transverse shear flow using numerical simulation to investigate the disturbance process near the magnetopause. The results show that magnetic field lines are bent by transverse shear flow disturbance near the current sheet region. There are multiple bipolar structures of the normal magnetic field in the numerical simulation. We term this new feature as K-point magnetic reconnection, realistic for discussing space observations.  相似文献   
65.
Wang  Shujuan  Yan  Yihua  Zhao  Ruizhen  Fu  Qijun  Tan  Chengming  Xu  Long  Wang  Shijin  Lin  Huaan 《Solar physics》2001,204(1-2):153-164
25 MHz–7.6 GHz global and detailed (fine structure – FS) radio spectra are presented, which were observed in the NOAA 9077 active region for the Bastille Day (14 July 2000) flare at 10:10–11:00 UT. Besides broadband radio bursts, high-resolution dynamic spectra reveal metric type II burst, decimetric type IV burst and various decimetric and microwave FSs, such as type III bursts, type U bursts, reverse-slope (RS)-drifting burst, fiber bursts, patch and drifting pulsation structure (DPS). The peak-flux-density spectrum of the radio bursts over the range 1.0–7.6 GHz globally appears as a U-shaped signature. Analyzing the features of backbone and herringbones of the type II burst, the speeds of shock and relevant energetic electron beams were estimated to be 1100 km s−1 and 58 500 km s−1, respectively. Also the time sequence of the radio emission is analyzed by comparing with the hard X-rays (HXRs) and the soft X-rays (SXRs) in this flare. After the maxima of the X-rays, the radio emission in the range 1.0–7.6 GHz reached maxima first at the higher frequency, then drifted to the lower frequency. This comparison suggested that the flare included three successive processes: firstly the X-rays rose and reached maxima at 10:10–10:23 UT, accompanied by fine structures only in the range 2.6–7.6 GHz; secondly the microwave radio emission reached maxima accompanied by many fine structures over the range 1.0–7.6 GHz at 10:23–10:34 UT; then a decimetric type IV burst and its associated FSs (fibers) in the range 1.0–2.0 GHz appeared after 10:40 UT.  相似文献   
66.
Quasi-electrostatic electron and ion-cyclotron instabilities are studied. The result indicates that the higher harmonic ion cyclotron instabilities (ICI) can be excited while the fast ions produced from reconnection are injected into a coronal loop. Part of the energetic ions can be dragged out of the magnetic mirror turning points and a negative plasma potential is generated. The plasma potential may directly accelerate the electrons up to the relativistic velocity within a short time. This acceleration is similar to the processes occurring in the magnetic mirror devices of controlled thermonuclear fusion. The spectrum and flux of accelerated electrons have also been obtained. Some observational results during the solar flare might be explained by this acceleration mechanism.  相似文献   
67.
Results of numerical simulation of currents in the western North Tropical Pacific Ocean by using a barotropic primitive equation model with fine horizontal resolution agreed well with observations and showed that the Mindanao Cyclonic Eddy located north of the equator and east of Mindanao Island exists during most of the year with monthly (and large seasonal) variations in scope . strength and central location . In June , an anticyclonic eddy occurs northeast of Halmahera Island, strengthens to maximum in August , exists until October and then disappears . The observed large-scale circulation systems such as the North Equatorial Current . the Mindanao Current and the North Equatorial Countercurrent are all very well reproduced in the simulations.  相似文献   
68.
A linear,hemispheric and stationary spectral model with multilayers in the vertical was employed to simulate thevertical propagation of waves triggered by mountains.Results show that,in cooperation with the East Asia zonal meanflow,Tibetan Plateau can excite a strong wavenumber 1 perturbation in the stratosphere with its ridge and trough lo-cated over the Pacific and Atlantic Oceans respectively.On the other hand,the stratospheric wavenumber 1 perturbationcaused by the mechanical forcing of the Rocky Mountains in cooperation with the North America zonal mean flow isvery weak.Calculations from observational data of the vertical profile of critical wavenumber for vertically propagatingwaves imply that the tropospheric wavenumber 1 perturbation can hardly penetrate the North America tropopause up-wards,whereas it can freely propagate through the East Asia tropopause into the stratosphere.Two-dimensional E-Pcross-sections obtained from both observational data and simulated results also demonstrate that waves excited by theRocky Mountains are refracted towards low latitudes in the troposphere during their upward propagation:whereas,inaddition to the above mentioned equatorward leaning branch,the wavenumber 1 and 2 planetary waves excited by theTibetan Plateau possess another branch which is refracted to high latitudes during upward propagation and penetratesthe tropopause into the stratosphere.It is therefore concluded that the difference in the horizontal and vertical wavepropagations in the two hemispheres is a result of the different dynamical forcing induced by the two main mountains inthe Northern Hemisphere.  相似文献   
69.
Using nine years of solar wind plasma and magnetic field data from the Wind mission, we investigated the characteristics of both magnetic clouds (MCs) and magnetic cloud-like structures (MCLs) during 1995 – 2003. A MCL structure is an event that is identified by an automatic scheme (Lepping, Wu, and Berdichevsky, Ann. Geophys. 23, 2687, 2005) with the same criteria as for a MC, but it is not usually identifiable as a flux rope by using the MC (Burlaga et al., J. Geophys. Res. 86, 6673, 1981) fitting model developed by Lepping, Jones, and Burlaga (Geophys. Res. Lett. 95(11), 957, 1990). The average occurrence rate is 9.5 for MCs and 13.6 for MCLs per year for the overall period of interest, and there were 82 MCs and 122 MCLs identified during this period. The characteristics of MCs and MCL structures are as follows: (1) The average duration, Δt, of MCs is 21.1 h, which is 40% longer than that for MCLs (Δt=15 h); (2) the average (minimum B z found in MC/MCL measured in geocentric solar ecliptic coordinates) is −10.2 nT for MCs and −6 nT for MCLs; (3) the average Dstmin  (minimum Dst caused by MCs/MCLs) is −82 nT for MCs and −37 nT for MCLs; (4) the average solar wind velocity is 453 km s−1 for MCs and 413 km s−1 for MCLs; (5) the average thermal speed is 24.6 km s−1 for MCs and 27.7 km s−1 for MCLs; (6) the average magnetic field intensity is 12.7 nT for MCs and 9.8 nT for MCLs; (7) the average solar wind density is 9.4 cm−3 for MCs and 6.3 cm−3 for MCLs; and (8) a MC is one of the most important interplanetary structures capable of causing severe geomagnetic storms. The longer duration, more intense magnetic field and higher solar wind speed of MCs, compared to those properties of the MCLs, are very likely the major reasons for MCs generally causing more severe geomagnetic storms than MCLs. But the fact that a MC is an important interplanetary structure with respect to geomagnetic storms is not new (e.g., Zhang and Burlaga, J. Geophys. Res. 93, 2511, 1988; Bothmer, ESA SP-535, 419, 2003).  相似文献   
70.
在8000至8670的波长范围内,利用一个由144颗恒星光谱组成的光谱厍,我们对57个巨椭圆和S0星系(M_B<-21)的光谱和它们的平均光谱进行了光谱合成.这个光谐库包括了光谱型为G,K和M的巨星和矮星,它具有的金属丰度[Fe/H]覆盖了-0.1到-0.5的范围,表面重力log g为1.0至5.0.光谱合成的结果表明:巨椭圆和S0星系的金属丰度约为太阳的一倍半;有效表面重力分布在3.2—4.1的范围内;矮星在8400附近光的贡献可与巨星相比较.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号