首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   942篇
  免费   124篇
  国内免费   171篇
测绘学   40篇
大气科学   372篇
地球物理   188篇
地质学   92篇
海洋学   56篇
天文学   409篇
综合类   26篇
自然地理   54篇
  2024年   3篇
  2023年   4篇
  2022年   14篇
  2021年   14篇
  2020年   10篇
  2019年   12篇
  2018年   18篇
  2017年   12篇
  2016年   10篇
  2015年   14篇
  2014年   23篇
  2013年   42篇
  2012年   17篇
  2011年   25篇
  2010年   35篇
  2009年   76篇
  2008年   87篇
  2007年   104篇
  2006年   109篇
  2005年   79篇
  2004年   65篇
  2003年   55篇
  2002年   53篇
  2001年   43篇
  2000年   57篇
  1999年   41篇
  1998年   47篇
  1997年   27篇
  1996年   28篇
  1995年   19篇
  1994年   14篇
  1993年   15篇
  1992年   14篇
  1991年   8篇
  1990年   3篇
  1989年   11篇
  1988年   8篇
  1987年   1篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有1237条查询结果,搜索用时 187 毫秒
61.
Vertical impacts on the Earth of asteroids 500-3000 km in diameter at 15 km/s have been numerically modelled using the hydrodynamic SOVA code. This code has been modified for the spherical system of coordinates well suited for simulations of very large impacts when the entire Earth is involved in motion. The simulations include cratering process, upward motion of deep mantle layers, fall of ejecta on the Earth, escape of matter to space, and formation of rock vapour atmospheres. The calculations were made for the period preceding disappearance of rock vapour atmospheres caused by radiation several years after the largest impacts. For very large vertical impacts at 15 km/s, escaping masses proved to be negligibly small. Quantities of kinetic, internal, potential, and radiated away energies are obtained as functions of time and space. After the impacts, a global layer of condensed ejecta covers the whole of the Earth's surface and the ejecta energy is sufficient to vaporise an ocean 3 km deep. The mass of rock vapour atmosphere is 10-23% of the impactor mass. This atmosphere has a greater mass than the water atmosphere if impactor is 2000 km in diameter or larger.  相似文献   
62.
A 1-D collisional Monte Carlo model of Europa's atmosphere is described in which the sublimation and sputtering sources of H2O molecules and their molecular fragments are accounted for as well as the radiolytically produced O2. Dissociation and ionization of H2O and O2 by magnetospheric electron, solar UV-photon and photo-electron impact, and collisional ejection from the atmosphere by the low-energy plasma are taken into account. Reactions with the surface are discussed, but only adsorption and atomic oxygen recombination are included in this model. The size of the surface-bounded oxygen atmosphere of Europa is primarily determined by a balance between atmospheric sources from irradiation of the satellite's icy surface by the high-energy magnetospheric charged particles and atmospheric losses from collisional ejection by the low-energy plasma, photo- and electron-impact dissociation, and ionization and pick-up from the surface-bounded atmosphere. A range of sources rates for O2 to H2O are used with a larger oxygen-to-water ratio than suggested by laboratory measurements in order to account for differences in adsorption onto grains in the regolith. These calculations show that the atmospheric composition is determined by both the water and oxygen photochemistry in the near-surface region, escape of suprathermal oxygen and water into the jovian system, and the exchange of radiolytic water products with the porous regolith. For the electron impact ionization rates used, pick-up ionization is the dominant oxygen loss process, whereas photo-dissociation and atmospheric sputtering are the dominant sources of neutral oxygen for Europa's neutral torus. Including desorption and loss of water enhances the supply of oxygen species to the neutral torus, but hydrogen produced by radiolysis is the dominant source of neutrals for Europa's torus in these models.  相似文献   
63.
We report results of polarimetric imaging observations of Mars with the Hubble Space Telescope during the 2003 opposition. Through careful calibration, the observations with the ACS camera allow measurements of the polarization degree with an absolute accuracy better than 0.5% and detection of features with polarization degree contrast as small as 0.2%. The general distribution of linear polarization parameters over the Mars disk and their dependence on phase angle and wavelength are well explained qualitatively by a combination of scattering separately by the martian surface and atmosphere. We have discovered transient polarization phenomena interpreted as clouds that are best observed in ultraviolet light. These clouds are optically thin but strongly polarizing, and their origin may be related to atmospheric ice condensation processes.  相似文献   
64.
Paul Withers  S.W Bougher 《Icarus》2003,164(1):14-32
Mars Global Surveyor accelerometer observations of the martian upper atmosphere revealed large variations in density with longitude during northern hemisphere spring at altitudes of 130-160 km, all latitudes, and mid-afternoon local solar times (LSTs). This zonal structure is due to tides from the surface. The zonal structure is stable on timescales of weeks, decays with increasing altitude above 130 km, and is dominated by wave-3 (average amplitude 22% of mean density) and wave-2 (18%) harmonics. The phases of these harmonics are constant with both altitude and latitude, though their amplitudes change significantly with latitude. Near the South Pole, the phase of the wave-2 harmonic changes by 90° with a change of half a martian solar day while the wave-3 phase stays constant, suggesting diurnal and semidiurnal behaviour, respectively. We use a simple application of classical tidal theory to identify the dominant tidal modes and obtain results consistent with those of General Circulation Models. Our method is less rigorous, but simpler, than the General Circulation Models and hence complements them. Topography has a strong influence on the zonal structure.  相似文献   
65.
Experimental studies related to the sublimation of ice, in bulk or as small particles, alone or mixed with dust similar to that expected on the surface of Mars, are reported. The experiments, a cloud physics particle sublimation model, and a convection model presented by Ingersoll, all indicate a strong dependence of sublimation rate on temperature, and this appears to be the dominant factor, assuming that the relative humidity of the air is fairly low. In addition the rate of loss of water vapour appears to depend primarily on exposed surface area and less on particle size and the total mass of the sample, or the mass of ice in the sample. The 2007/8 Phoenix Scout mission plans to obtain and analyse samples of sub-surface ice from about 70° N on Mars. A concern is that these samples, in the form of ice chips of size about 1 mm diameter, could be prone to sublimation when exposed for prolonged periods (many hours) to a relatively warm and dry atmosphere. Our laboratory simulations confirm that this could be a problem if particles are simply left lying on the surface, but also indicate that samples kept suitably cold and collected together in confined piles will survive long enough for the collection and delivery (to the analysis instruments) procedure to be completed.  相似文献   
66.
M.J. Klein 《Icarus》2006,184(1):170-180
We present a self-consistent, 36-year record of the disk-averaged radio brightness of Uranus at wavelengths near 3.5 cm. It covers nearly half a uranian year, and includes both equatorial and polar viewing geometries (corresponding to equinox and solstice, respectively). We find large (greater than 30 K) changes over this time span. In agreement with analyses made of more limited microwave data sets, our observations suggest the changes are not caused by geometric effects alone, and that temporal variations may exist in the deep uranian troposphere down to pressures of tens of bars. Our data also support an earlier suggestion that a rapid, planetary-scale change may have occurred in late 1993 and early 1994. The seasonal record presented here will be useful for constraining dynamical models of the deep atmosphere, and for interpreting observations made during Uranus' 2007 equinox passage. As part of a multi-wavelength observing campaign for this event, the Goldstone-Apple Valley Radio Telescope (GAVRT) project will continue to make frequent, single-dish observations near 3.5 cm.  相似文献   
67.
GPS无线电掩星技术能提供高精度、高分辨率、全球覆盖的地球电离层和中性层大气剖面。它具有全天候、低费用、无系统长期漂移等优点。从1995年4月至1997年3月,首次GPS/MET试验的成功显示了GPS掩星技术对监测全球大气能够发挥重要的作用,从而成为当前空间探测技术的研究热点之一。该文主要叙述了无线电掩星技术的数据处理系统的有关情况,并介绍了美国UCAR的掩星数据处理系统CDAAC的概况,可作为我国开展无线电掩星计划有关工作的借鉴。  相似文献   
68.
张延安  宋慕陶  季海生 《天文学报》2002,43(2):155-159,T001,T002
2000年6月18日中国科学院紫金山天文台赣榆观测站观测到太阳西边缘一个小型抛射现象,寿命仅15^m,不属于耀斑的后期抛射现象,可看到十发精细的螺旋结构。用低层大气磁重联提供的初速约100kg/s,在略骈劳伦兹力情况下,给出了准均匀密度抛射柱所能达到的高度,和观测值一致。  相似文献   
69.
在丽江高美古前期选址工作的基础上[1~2],二期选址的望远镜地面高度的确定工作于2000年11月3日至2000年12月16日进行,采用30m铁塔的温度脉动测量装置,对6#选址观测点的近地面大气湍流进行反复多次测量,得到近地面不同高度(4~30m和8~22m)上每夜温度结构系数C2T的平均值,对观测取得的资料作进一步处理和分析,得到高美古6#观测点的望远镜地面高度为13~15m。  相似文献   
70.
The solar system, as we know it today, is about 4.5 billion years old. It is widely believed that it was essentially completed 100 million years after the formation of the Sun, which itself took less than 1 million years, although the exact chronology remains highly uncertain. For instance: which, of the giant planets or the terrestrial planets, formed first, and how? How did they acquire their mass? What was the early evolution of the “primitive solar nebula” (solar nebula for short)? What is its relation with the circumstellar disks that are ubiquitous around young low-mass stars today? Is it possible to define a “time zero” (t 0), the epoch of the formation of the solar system? Is the solar system exceptional or common? This astronomical chapter focuses on the early stages, which determine in large part the subsequent evolution of the proto-solar system. This evolution is logarithmic, being very fast initially, then gradually slowing down. The chapter is thus divided in three parts: (1) The first million years: the stellar era. The dominant phase is the formation of the Sun in a stellar cluster, via accretion of material from a circumstellar disk, itself fed by a progressively vanishing circumstellar envelope. (2) The first 10 million years: the disk era. The dominant phase is the evolution and progressive disappearance of circumstellar disks around evolved young stars; planets will start to form at this stage. Important constraints on the solar nebula and on planet formation are drawn from the most primitive objects in the solar system, i.e., meteorites. (3) The first 100 million years: the “telluric” era. This phase is dominated by terrestrial (rocky) planet formation and differentiation, and the appearance of oceans and atmospheres.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号