首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5533篇
  免费   1527篇
  国内免费   1731篇
测绘学   862篇
大气科学   3409篇
地球物理   970篇
地质学   2601篇
海洋学   251篇
天文学   62篇
综合类   366篇
自然地理   270篇
  2024年   37篇
  2023年   157篇
  2022年   250篇
  2021年   266篇
  2020年   195篇
  2019年   298篇
  2018年   220篇
  2017年   236篇
  2016年   210篇
  2015年   280篇
  2014年   407篇
  2013年   368篇
  2012年   397篇
  2011年   361篇
  2010年   364篇
  2009年   394篇
  2008年   350篇
  2007年   361篇
  2006年   355篇
  2005年   350篇
  2004年   313篇
  2003年   335篇
  2002年   282篇
  2001年   301篇
  2000年   188篇
  1999年   195篇
  1998年   171篇
  1997年   156篇
  1996年   159篇
  1995年   128篇
  1994年   125篇
  1993年   96篇
  1992年   89篇
  1991年   98篇
  1990年   97篇
  1989年   69篇
  1988年   16篇
  1987年   10篇
  1986年   6篇
  1985年   9篇
  1984年   9篇
  1983年   4篇
  1982年   8篇
  1980年   7篇
  1979年   7篇
  1978年   5篇
  1955年   5篇
  1943年   4篇
  1937年   4篇
  1935年   3篇
排序方式: 共有8791条查询结果,搜索用时 31 毫秒
71.
183.31 GHz微波辐射计在探测低含量水汽时具有优势,但也存在通道饱和问题,定量研究该问题对明确该类型仪器探测水汽能力和适用范围具有重要意义。基于天津市人工影响天气办公室增雨飞机运-12搭载的183.31 GHz微波辐射计GVR(G-band water Vapor Radiometer),采用探空资料对该辐射计4个通道进行饱和问题研究,定量计算其饱和阈值及探测灵敏度,分析各通道水汽探测能力及适用范围。结果表明:机载微波辐射计4个通道水汽探测灵敏度及饱和阈值与观测高度有关,当水汽含量较低时,通道1((183±1)GHz)观测高度越高灵敏度越高,通道3((183±7)GHz)和通道4((183±14)GHz)观测高度越高灵敏度越低,通道2((183±3)GHz)灵敏度几乎不受观测高度影响,通道1和通道4观测高度越高积分水汽探测饱和阈值越小,观测高度越低饱和阈值越大,通道2和通道3饱和阈值几乎不受观测高度影响。晴空条件下选择水汽探测能力最强的单通道对积分水汽含量进行反演,当积分水汽含量处于0—1.3、1.3—4.0和4.0—9.8 mm时,分别选择通道1、通道2、通道3作为反演通道,不同观测高度的积分水汽含量反演均适用。云的发射作用使辐射计各通道亮温升高,亮温升高幅度与云液态水含量、云与观测高度的距离及云厚有关,云液态水含量越大,各通道水汽探测灵敏度及饱和阈值越小;云天条件下选择水汽探测能力最强的双通道对积分水汽含量进行反演,以液态水路径区间来选择合适的水汽探测通道,液态水含量越高,积分水汽可探测范围越小。要探测到0.1 mm的积分水汽含量变化,机载微波辐射计(GVR)在晴空条件下的水汽探测适用范围为0—9.8 mm,其探测能力在云天条件下减弱,水汽探测适用范围因云液态水含量不同而不同。   相似文献   
72.
针对离散站点资料格点化的业务需求及 Cressman 方法在地形复杂区域客观分析存在的问 题,利用山东及周边省自动气象站观测的 2 m气温和 ECMWF预报的海上 2 m气温,结合山东省中尺度数值预报位温递减率、90 m分辨率 SRTM高程数据,采用统一高度 Cressman 方法对山东省地面2 m气温进行客观分析,生成了逐 1 h、0.01°×0.01°高分辨率的地面 2 m气温格点产品。结果表明,统一高度 Cressman 方法的客观分析格点产品在地形复杂区域的分析更合理,月平均误差基本在±1 ℃以内,鲁中山区地形高度较高区域月平均误差略大于鲁西北、鲁西南、鲁东南和山东半岛等地的平原地区,气温偏低的10、11、12月温度准确率均略低于 5、6、7、8、9 月;2020 年 5—12 月平均误差为-0.0039 ℃,平均绝对误差为 0.1469 ℃,均方根误差为 0.3597 ℃,2 ℃以内准确率为 99.64%,1 ℃以内准确率为 98.24%,各项检验指标均较优。总体上统一高度 Cressman 客观分析格点产品质量接近中国气象局陆面数据同化系统( HRCLDAS )高分辨率格点实况产品。  相似文献   
73.
利用逐5 min地面观测资料、探空资料、风云四号卫星云图以及NCEP 1°×1°再分析资料,分析2020年2月1—2日出现在榆林市的一次浓雾天气成因及维持机制。结果表明:此次浓雾属于辐射雾,发生在500 hPa为较平直纬向气流,700 hPa和850 hPa盛行弱偏北风,地面处于均压场中的大尺度环流背景下。大雾出现前雾区有降雪,降雪后空气湿度达到饱和,地面维持3 m/s以下弱偏北风,夜间辐射降温,气温下降至露点温度,饱和水汽凝结成小水珠,大雾得以形成和发展;雾区上空850 hPa上逆温层稳定存在,影响动量的垂直交换,使得水汽在近地层长时间集聚,是浓雾得以维持12 h的主要原因;日出后地面气温回升,近地面动量下传和冷空气入侵,垂直扩散增强,浓雾得以快速消散。分析浓雾期间动力和水汽条件发现,大雾出现前,水汽在雾区上空辐合,为大雾的形成提供了水汽基础;大雾维持阶段,雾区上空层结稳定,近地面有逆温层存在;大雾消散阶段,逆温层被破坏,低层转为辐散气流,浓雾快速消散。  相似文献   
74.
采用20世纪再分析版本2c数据集的云水量逐月再分析数据,通过数理统计方法,分析了1960~2014年全球、海洋和陆地上空云水量的分布和变化特征及其与水汽通量的关系。结果表明:1)全球云水量空间分布不均,海洋高于陆地且比例约为4﹕3,中低纬海洋、陆地上空云水量变化趋势分别为0.07 g m?2 (10 a)?1和?0.04 g m?2 (10 a)?1,季节性差异主要体现于夏季在热带辐合带和南半球海洋高,冬季在北半球海洋和南半球陆地高。2)对比六大洲发现,云水量最高的南美洲有最快增加趋势,为0.46 g m?2 (10 a)?1,同时云水量最低的非洲有最快降低趋势,为?0.59 g m?2 (10 a)?1。3)中低层整层水汽通量散度场的辐合、辐散区和云水量的高、低值区相对应,云水量与水汽通量散度变化呈负相关(相关系数为?0.44),负相关关系在赤道附近的低纬地区显著。本文揭示了在全球变暖背景下,大气中云水量分布和变化的时空格局,为模式参数化和未来气候预估提供参考。  相似文献   
75.
本文利用NCEP/NCAR再分析资料和中国2374站日降水资料,通过水汽收支方程分解方法分析了华南夏季降水在1993~2002年时段年代际增多以及2003~2013年时段年代际减少的水汽输送特征及其成因。结果表明:1993~2002年时段(2003~2013年时段),局地环流导致异常下沉(上升)气流,南亚高压偏东(偏西)和西太平洋副热带高压(简称副高)偏西(偏东),菲律宾及副高西南侧水汽输送加强(减弱),华南地区低层出现强的水汽辐合(辐散),导致降水偏多(偏少)。华南地区夏季降水两次年代际变化主要与风速变化引起的水汽输送动力散度项的异常有关,同时还受到与比湿变化引起的水汽输送热力散度项异常、及天气尺度的涡旋引起的水汽输送涡流散度项异常影响。此外,研究发现水汽输送的异常与环流和海温异常均密切相关。  相似文献   
76.
全球气温气压(GPT)系列模型可用于计算全球任意位置的气温、气压和水汽压等各种气象参数,目前国内外广泛使用且精度较高的全球气温气压模型主要为GPT2w模型.本文利用2012—2016年中国大陆地区102个国家气象站实测的气温、气压和水汽压数据对GPT2w模型进行精度分析.结果表明:GPT2w模型的气温误差均值为-0.45 ℃,标准偏差均值为10.04 ℃;气压误差均值为2.05 hPa,标准偏差均值为6.55 hPa;水汽压误差均值为0.11 hPa,标准偏差均值为6.15 hPa.总体而言,GPT2w模型计算出的气温、气压和水汽压值在中国大陆大部分地区具有较高的精度.同时,三种气象参数的精度在中国大陆地区分布不均匀,不同纬度区间存在一定差异且以年为周期均具有明显的季节性.  相似文献   
77.
青藏高原横切变线(简称切变线)是引发青藏高原夏季暴雨的主要天气系统之一。本文基于欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,简称ECMWF)提供的ERA-5再分析资料,选取14个生成于6~8月、生命史为38小时且引发高原暴雨的切变线个例进行合成分析,探究动力和热力作用对夏季切变线生成和强度演变的影响。结果表明:(1)500 hPa切变线生成于伊朗高压和西太平洋副热带高压两高之间的鞍形场中,处于580 dagpm闭合低值中心和272 K高温中心内,比湿大值区的北侧;200 hPa南亚高压北部边缘、西风急流入口区南侧。(2)切变线强度表现出明显的日变化特征,在当地时间(LT=UTC+6h)23时最强,13时最弱。(3)涡度收支诊断表明,青藏高原上空高低层散度变化对切变线强度变化具有指示意义,500 hPa涡度最大值(最小值)出现时间滞后于辐合作用最大值(最小值)3小时。(4)切变线演变过程中,切变线发展时位涡随之增大。位涡收支诊断表明,青藏高原上空的水汽和非绝热加热对切变线的生成和发展演变起到重要作用。当边界层感热加热增强时,低层辐合增强,上升运动增强,在充足的水汽配合下,凝结潜热释放使非绝热加热中心抬高至大气中层,从而有利于切变线生成及发展。  相似文献   
78.
利用1981—2020年5—9月天山南坡16个气象站逐日降水资料和NCEP/NCAR GDAS再分析资料,分析天山南坡暖季暴雨过程的环流形势,并采用HYSPLIT模式,模拟追踪水汽源地及输送特征。结果表明:天山南坡暖季暴雨主要发生在南亚高压双体型、500 hPa以上西南急流(气流)、700 hPa切变辐合以及天山地形辐合抬升的重叠区域。水汽主要源自中亚、大西洋及其沿岸、地中海和黑海及其附近,经TKAP(塔吉克斯坦、吉尔吉斯坦、阿富汗东北部、巴基斯坦北部和印度西北部)、南疆、北疆关键区,分别从偏西、偏南、偏北通道输入暴雨区,700 hPa以上偏西通道、以下偏北通道占主导地位,且贡献最大的是南疆关键区。源自中亚的水汽主要输送至暴雨区700 hPa及以下,对暴雨的贡献较大,且沿途损失较大;源自大西洋及其沿岸、地中海和黑海及其附近的水汽主要输送至暴雨区700 hPa以上,对暴雨的贡献较小。另外,中低层还存在源自北疆、南疆、北美洲东部、蒙古的水汽。基于上述特征,建立了天山南坡暖季暴雨过程水汽三维精细化结构模型。  相似文献   
79.
利用1981—2020年5—9月天山南坡16个气象站逐日降水资料和NCEP/NCAR GDAS再分析资料,分析天山南坡暖季暴雨过程的环流形势,并采用HYSPLIT模式,模拟追踪水汽源地及输送特征。结果表明:天山南坡暖季暴雨主要发生在南亚高压双体型、500 hPa以上西南急流(气流)、700 hPa切变辐合以及天山地形辐合抬升的重叠区域。水汽主要源自中亚、大西洋及其沿岸、地中海和黑海及其附近,经TKAP(塔吉克斯坦、吉尔吉斯坦、阿富汗东北部、巴基斯坦北部和印度西北部)、南疆、北疆关键区,分别从偏西、偏南、偏北通道输入暴雨区,700 hPa以上偏西通道、以下偏北通道占主导地位,且贡献最大的是南疆关键区。源自中亚的水汽主要输送至暴雨区700 hPa及以下,对暴雨的贡献较大,且沿途损失较大;源自大西洋及其沿岸、地中海和黑海及其附近的水汽主要输送至暴雨区700 hPa以上,对暴雨的贡献较小。另外,中低层还存在源自北疆、南疆、北美洲东部、蒙古的水汽。基于上述特征,建立了天山南坡暖季暴雨过程水汽三维精细化结构模型。  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号