首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   145篇
  国内免费   61篇
测绘学   34篇
大气科学   115篇
地球物理   341篇
地质学   108篇
海洋学   1篇
天文学   2篇
综合类   21篇
自然地理   214篇
  2024年   1篇
  2023年   5篇
  2022年   16篇
  2021年   53篇
  2020年   53篇
  2019年   37篇
  2018年   30篇
  2017年   36篇
  2016年   30篇
  2015年   31篇
  2014年   51篇
  2013年   89篇
  2012年   50篇
  2011年   48篇
  2010年   31篇
  2009年   25篇
  2008年   34篇
  2007年   30篇
  2006年   20篇
  2005年   29篇
  2004年   24篇
  2003年   14篇
  2002年   14篇
  2001年   18篇
  2000年   15篇
  1999年   8篇
  1998年   13篇
  1997年   9篇
  1996年   4篇
  1995年   1篇
  1994年   4篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1988年   1篇
  1983年   1篇
排序方式: 共有836条查询结果,搜索用时 15 毫秒
731.
A direct comparison of urban and rural surface energy balances, as well as a variety of other variables including incoming shortwave/longwave radiation and aerosol optical depth, is conducted for the Beijing metropolitan area. The results indicate that, overall, the urban area receives a smaller amount of incoming shortwave radiation but a larger amount of incoming longwave radiation. However, comparisons in the aerosol optical depth and cloud fraction at the two locations suggest that neither aerosol optical depth nor cloud fraction alone can explain the difference in the incoming shortwave radiation. The urban–rural differences in the incoming longwave radiation are unlikely to be caused by the presence of more abundant greenhouse gases over the urban area, as suggested by some previous studies, given that water vapor is the most dominant greenhouse gas and precipitable water is found to be less in urban areas. The higher incoming longwave radiation observed over the urban area is mostly likely due to the higher temperatures of the ambient air. The urban area is also found to always produce higher sensible heat fluxes and lower latent heat fluxes in the growing season. Furthermore, the urban area is associated with a larger amount of available energy(the sum of sensible and latent heat fluxes) than the rural area, except in May and October when evapotranspiration in the rural area significantly exceeds that in the urban area. This study provides observational evidence of urban–rural contrasts in relevant energy-balance components that plausibly arise from urban–rural differences in atmospheric and land-surface conditions.  相似文献   
732.
Many studies have investigated the influence of evapotranspiration and albedo and emphasize their separate effects but ignore their interactive influences by changing vegetation status in large amplitudes. This paper focuses on the comprehensive influence of evapotranspiration and albedo on surface temperature by changing the leaf area index(LAI) between 30–90 N.Two LAI datasets with seasonally different amplitudes of vegetation change between 30–90N were used in the simulations.Seasonal differences between the results of the simulations are compared, and the major findings are as follows.(1) The interactive effects of evapotranspiration and albedo on surface temperature were different over different regions during three seasons [March–April–May(MAM), June–July–August(JJA), and September–October–November(SON)], i.e., they were always the same over the southeastern United States during these three seasons but were opposite over most regions between30–90 N during JJA.(2) Either evapotranspiration or albedo tended to be dominant over different areas and during different seasons. For example, evapotranspiration dominated almost all regions between 30–90N during JJA, whereas albedo played a dominant role over northwestern Eurasia during MAM and over central Eurasia during SON.(3) The response of evapotranspiration and albedo to an increase in LAI with different ranges showed different paces and signals. With relatively small amplitudes of increased LAI, the rate of the relative increase in evapotranspiration was quick, and positive changes happened in albedo. But both relative changes in evapotranspiration and albedo tended to be gentle, and the ratio of negative changes of albedo increased with relatively large increased amplitudes of LAI.  相似文献   
733.
利用河南省24个地面气象站1961-2009年逐日降水和气温资料计算SPEI(标准化降水蒸散指数),并按照SPEI的标准界值将干旱强度划分为轻度干旱、中度干旱和极端干旱.根据河南省冬小麦的生长特点将小麦生育期划分为生育前期、分蘖期和返青-抽穗-成熟期.采用Meteoinfo软件、Morlet小波分析方法、线性回归研究不同生育期干旱变化趋势、覆盖范围、发生频率、周期及空间分布,结果表明,冬小麦各个生育阶段均出现过不同程度的干旱,只是不同地区、不同年份发生的频率和强度不同,但各阶段均存在着轻度干旱发生的概率最大,而极端干旱发生的概率最小的特点.驻马店地区在各阶段发生干旱的概率都较大.对河南省冬小麦全生育期的SPEI分析表明,全生育期干旱出现概率的极值中心有显著的10 a左右的周期变化特征,近年来干旱指数呈逐渐增大的趋势.  相似文献   
734.
孙灏  周柏池  李欢  阮琳 《遥感学报》2021,25(3):776-790
局域尺度上的水文或农业应用亟需较高空间分辨率的土壤湿度(SM)数据,微波土壤湿度空间降尺度是实现这一需求的重要途径。其中"光学/热红外与微波数据融合"的降尺度方法展现出了较大的应用潜力,然而这类方法依赖于遥感地表温度LST (Land Surface Temperature)或由LST分解得到的SM指数,受限于LST"云污染"、LST与SM解耦效应和LST分解不确定性等问题。为规避上述问题,本文通过构建3种地表蒸散效率LEE(Land surface Evapotranspiration Efficiency)与SM的降尺度函数关系(指数、余弦、余弦平方),利用MODIS地表蒸散数据(MOD16A2)计算得到的LEE (空间分辨率500 m)实现了SMAP土壤湿度产品(空间分辨率36 km)的空间降尺度。研究从动态范围、能量守恒、SM地面稀疏验证站、SM地面核心验证站等角度对降尺度算法进行评价分析。结果表明,本算法有效增加了原SM产品的空间细节特征、保持了原SM产品的动态范围并且降尺度前后能量守恒;与地面验证数据的对比分析表明,降尺度结果有效保持了原SM与地面实测数据的良好一致性;敏感性分析表明,余弦平方函数对MOD16A2产品误差的敏感性相对最小。  相似文献   
735.
736.
Chaolei Zheng  Quan Wang 《水文研究》2014,28(25):6124-6134
Spatial and temporal variations of reference evapotranspiration (ET0) are useful for regional agricultural and water resources management as well as required in most distributed hydrological modelling. In the current study, the Penman–Monteith estimated ET0 in the arid land of Northwestern China has been explicitly explored using the Mann–Kendall test. Most stations in the study region exhibited significant decreasing trend of ET0 (P < 0.05) with only few occasions showing significant increasing trend (P < 0.05), despite the increase of temperature in the entire region. Analysis results revealed that the overall decreasing wind speed contributed most to the decreasing trend of ET0, whereas the contributions of relative humidity and sunshine duration were limited. Temperature played the second important role on determining ET0 trend, but its effect was opposite to that of wind speed and was largely offset by the decreasing wind speed. Furthermore, sensitivity analysis suggested the impact of temperature to ET0 was much larger than formerly reported if its effect on saturated vapour deficit was taken into account. The results obtained in the current study will help for better understanding of the effects of climate changes to water resource management in the arid land of northwest China. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
737.
Thus far, measurements and estimations of actual evapotranspiration (ET) from high‐altitude grassland ecosystems in remote areas like the Qinghai‐Tibetan plateau are still insufficient. To address these issues, a comparison between the results of the eddy covariance (EC) measurements and the estimates, considering the Katerji and Perrier (KP), the Todorovic (TD) and the Priestley–Taylor (PT) models, was carried out over an alpine grassland (38o03'1.7'' N, 100o 27’ 26'' E; 3032 m a.s.l.) during the growing seasons in 2008 and 2009. The results indicated that the KP model after a particularly simple calibration gave the most effective ET values in different time scales, the PT model slightly underestimate ET at night and the TD model significantly overestimated ET at noon. In addition, the canopy resistance calculated by the TD model was completely different from that calculated using the inverted EC‐measured data and the KP model, which may be due to some unrealistic assumptions made by the TD model. The KP parameters were a = 0.17 and b = 1.50 for the alpine grassland and appeared to be interannually stable. However, the PT parameter showed some interannual variations (α = 0.83 and 0.74 for 2008 and 2009, respectively). Therefore, the KP model was preferred to estimate the actual ET at both hourly and daily time scales. The PT model, being the simplest approach and field condition dependent, was recommended when available weather data were rare. On the contrary, the TD model always overestimated the actual ET and should be avoided in case of the alpine grassland ecosystems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
738.
Water availability is one of the key environmental factors that control ecosystem functions in temperate forests. Changing climate is likely to alter the ecohydrology and other ecosystem processes, which affect forest structures and functions. We constructed a multi‐year water budget (2004–2010) and quantified environmental controls on an evapotranspiration (ET) in a 70‐year‐old mixed‐oak woodland forest in northwest Ohio, USA. ET was measured using the eddy‐covariance technique along with precipitation (P), soil volumetric water content (VWC), and shallow groundwater table fluctuation. Three biophysical models were constructed and validated to calculate potential ET (PET) for developing predictive monthly ET models. We found that the annual variability in ET was relatively stable and ranged from 578 mm in 2009 to 670 mm in 2010. In contrast, ET/P was more variable and ranged from 0.60 in 2006 to 0.96 in 2010. Mean annual ET/PET_FAO was 0.64, whereas the mean annual PET_FAO/P was 1.15. Annual ET/PET_FAO was relatively stable and ranged from 0.60 in 2005 to 0.72 in 2004. Soil water storage and shallow groundwater recharge during the non‐growing season were essential in supplying ET during the growing season when ET exceeded P. Spring leaf area index (LAI), summer photosynthetically active radiation, and autumn and winter air temperatures (Ta) were the most significant controls of monthly ET. Moreover, LAI regulated ET during the whole growing season and higher temperatures increased ET even during dry periods. Our empirical modelling showed that the interaction of LAI and PET explained >90% of the variability in measured ET. Altogether, we found that increases in Ta and shifts in P distribution are likely to impact forest hydrology by altering shallow groundwater fluctuations, soil water storage, and ET and, consequently, alter the ecosystem functions of temperate forests. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
739.
Hong Xie  Xuan Zhu 《水文研究》2013,27(25):3685-3693
Evapotranspiration is an important component of the water and energy balance. It is dependent on climate. Precipitation, solar radiation, temperature, humidity, and wind all contribute to the rate of evapotranspiration. In this study, the temporal trends of reference evapotranspiration (ETref) and four main ETref drivers, namely, mean air temperature (Ta), wind speed (u2), net radiation (Rn) and actual vapour pressure (ea) from 1970 to 2009, were calculated based on 75 meteorological stations on the Tibetan Plateau. The results showed that the ETref on the Tibetan Plateau decreased on average by 0.6909 mm a‐1a‐1 from 1970 to 2009. Ta and ea showed an increasing trend, whereas u2 and Rn exhibited a decreasing trend. To explore the underlying causes of the ETref variation, an attribution analysis was performed to quantify the contribution of Ta, u2, Rn and ea, which showed that the changes in u2, Rn and ea produced the negative effect, whereas Ta produced the positive effect on ETref rates. The changes in u2 were found to produce the largest decrease (?0.7 mm) in ETref, followed by ea (?0.4 mm) and Rn (?0.1 mm). Although the significant increase in Ta had a large positive effect (0.51 mm) on ETref rates, changes in the other three variables each reduced ETref rates, resulting in an overall negative trend in ETref. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
740.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号