首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   13篇
  国内免费   18篇
大气科学   8篇
地球物理   26篇
地质学   74篇
海洋学   7篇
天文学   3篇
综合类   5篇
自然地理   32篇
  2022年   3篇
  2021年   1篇
  2020年   4篇
  2019年   4篇
  2018年   4篇
  2017年   6篇
  2016年   4篇
  2015年   2篇
  2014年   7篇
  2013年   7篇
  2012年   15篇
  2011年   12篇
  2010年   4篇
  2009年   11篇
  2008年   14篇
  2007年   5篇
  2006年   15篇
  2005年   8篇
  2004年   2篇
  2003年   9篇
  2002年   2篇
  1999年   1篇
  1997年   3篇
  1994年   1篇
  1993年   3篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1975年   1篇
排序方式: 共有155条查询结果,搜索用时 312 毫秒
81.
加拿大马更些冻土区天然气水合物试生产进展与展望   总被引:16,自引:0,他引:16  
马更些(Mackenzie)冻土区位于加拿大西北地区,是世界上最著名的天然气水合物产地之一,也是加拿大最重要的含油气盆地之一。在Mallik地区已相继钻探了L 38、2L 38、3L 38、4L 38和5L 38共5个钻孔,并进行了地质、地球物理、地球化学、微生物学和试生产等方面的多学科多方法研究,是目前全球天然气水合物研究程度最高、资料最丰富的地区。“Mallik 2002”项目开展了天然气水合物的短期试生产,共对6个水合物层位进行了降压法试生产并在其中的4个层位取得了成功,同时利用注入约80℃的热流体进行了5天多的加热法试生产,共生产出468 m3的天然气。“Mallik 2002”项目的成功实施是天然气水合物开发利用史上的里程碑,为将来的长期试生产和最终开发利用奠定了基础。随着开发利用研究的不断深入,天然气水合物这一规模巨大的潜在能源有可能在不久的将来为人类社会所用。  相似文献   
82.
冻土区路基的安全可靠性取决于路基地温场特征和路基面抗自然侵蚀特征。在路基基床上部修筑遮阳棚和在边坡上修筑遮阳板既可阻挡太阳对路基面和路基边坡的直接辐射,改变路基地温场形态,降低土层温度,又可防止降水渗入路基或降雪覆盖路面。这对防止冻土退化,提高冻土区铁路路基安全可靠性是一种非常有效而又简单易行的工程措施。本文以青藏铁路冻土区遮挡式路基结构路基表面温度数据和该地段气象资料为基础,运用带有相变的一维热传导方程模拟分析了青藏铁路长期运营过程中遮挡式路基结构对冻土区路基人为上限的抬升效果及对路基稳定性的影响,认为遮挡式路基结构是一种安全可靠的冻土区路基工程结构形式,同时也是未来铁路运营过程整治路基病害的一种有效工程措施。  相似文献   
83.
The molar ratios of atmospheric gases change during dissolution in water due to differences in their relative solubilities. We exploited this characteristic to develop a tool to clarify the origin of ice formations in permafrost regions. Extracted from ice, molar gas ratios can distinguish buried glacier ice from intrasedimental ground ice formed by freezing groundwaters. An extraction line was built to isolate gases from ice by melting and trapping with liquid He, followed by analysis of N2, O2,, Ar, 18OO2 and 15NN2, by continuous flow mass spectrometry. The method was tested using glacier ice, aufeis ice (river icing) and intrasedimental ground ice from sites in the Canadian Arctic. O2/Ar and N2/Ar ratios clearly distinguish between atmospheric gas in glacial ice and gases from intrasedimental ground ice, which are exsolved from freezing water. δ15NN2 and δ18OO2 in glacier ice, aufeis ice and intrasedimental ground ice do not show clear distinguishing trends as they are affected by various physical processes during formation such as gravitational settling, excess air addition, mixing with snow pack, and respiration.  相似文献   
84.
《China Geology》2021,4(1):17-31
The Qinghai-Tibet Plateau (also referred to as the Plateau) is the largest area bearing alpine permafrost region in the world and thus is endowed with great formation conditions and prospecting potential of natural gas hydrates (NGH). Up to now, one NGH accumulation, two inferred NGH accumulations, and a series of NGH-related anomalous indicators have been discovered in the Plateau, with NGH resources predicted to be up to 8.88×1012 m3. The NGH in the Qinghai-Tibet Plateau have complex gas components and are dominated by deep thermogenic gas. They occur in the Permian-Jurassic strata and are subject to thin permafrost and sensitive to environment. Furthermore, they are distinctly different from the NGH in the high-latitude permafrost in the arctic regions and are more different from marine NGH. The formation of the NGH in the Plateau obviously couples with the uplift and permafrost evolution of the Plateau in spatial-temporal terms. The permafrost and NGH in the Qilian Mountains and the main body of the Qinghai-Tibet Plateau possibly formed during 2.0–1.28 Ma BP and about 0.8 Ma BP, respectively. Under the context of global warming, the permafrost in the Qinghai-Tibet Plateau is continually degrading, which will lead to the changes in the stability of NGH. Therefore, The NGH of the Qinghai-Tibet Plateau can not be ignored in the study of the global climate change and ecological environment.©2021 China Geology Editorial Office.  相似文献   
85.
多年冻土和季节冻土分别占北半球裸露地表的24%和55%。近地表土壤冻融的范围、冻结起始日期、持续时间及冻融深度对寒季/寒区的植被生长、大气与土壤间能量、水分及温室气体交换都具有极其重要的影响。卫星遥感结合地面观测资料研究局地到区域尺度的季节冻土和多年冻土已取得诸多成果。综述了近几十年来卫星遥感技术在冻土研究中的应用。监测多年冻土和地表冻融循环通常需要综合利用可见光、红外、被动微波及主动微波(包括合成孔径雷达SAR和散射计)遥感数据,任何单一波段的传感器都无法满足研究需求。SAR图像能提供空间分辨率较高的寒季/寒区近地表土壤冻融状态的起始日期、持续时间和区域演变等信息,但目前在轨SAR的重访周期相对于春秋季的土壤冻融循环变化过长;星载被动微波传感器具有多通道观测且重访周期较高,但空间分辨率很低的特点;光学和热红外传感器的时空分辨率介于SAR和被动微波遥感之间,但应用于冻土研究时需要具备多年冻土分布和冻融深度与环境因子相关关系的先验信息。总体而言,微波遥感是探测无雪覆盖近地表土壤冻融循环的有效技术手段,而利用热红外传感器反演的地表温度研究土壤冻融过程具有极大潜力。应用卫星遥感反演的积雪范围、雪深、融雪、地表类型、...  相似文献   
86.
The cell membrane phospholipid (PL) inventory of microbial populations in a Siberian permafrost soil of the Lena Delta was analysed to examine as to how the microbial populations within different horizons of the active layer were adapted to the extreme temperature gradient in this environment. One surface-near and one permafrost-near soil sample were taken from the active layer on Samoylov Island in the southern central Lena Delta (Siberia) and in each case incubated at 4 and 28 °C. Subsequently, the phospholipid cell membrane composition of the indigenous microbial populations was qualitatively and quantitatively determined and compared. In both horizons, the incubation at 4 °C is characterized by a shift in the PL inventory to more short chain fatty acids. A significant trend in the proportions of saturated and unsaturated fatty acids, however, was not detected. A higher proportion of both short chain and unsaturated fatty acids counterbalances the effect of decreasing cell membrane fluidity with decreasing environmental temperature. Thus, the adaptation of the permafrost microbial populations within the different horizons to varying ambient temperature conditions appears to be mainly regulated by the chain length of the phospholipid fatty acids. Although there is almost no change in the proportions of unsaturated fatty acids between the 4 and 28 °C incubation experiments, the permafrost-near horizon in general contains more unsaturated fatty acids than the surface-near horizon and a higher proportion of short chain fatty acids. This suggests that the lipid inventory of the microbial population nearer to the perennially frozen ground is more adapted to lower temperatures than that of the microbial community from the surface-near horizon, which seems to show a higher flexibility toward higher temperature conditions. The permafrost-near horizon appears to be dominated by psychrophilic species, while the surface-near horizon is characterized by a mesophilic-dominated microbial community.  相似文献   
87.
We use a state of the art climate model (CAM3–CLM3) to investigate the sensitivity of surface climate and land surface processes to treatments of snow thermal conductivity. In the first set of experiments, the thermal conductivity of snow at each grid cell is set to that of the underlying soil (SC-SOIL), effectively eliminating any insulation effect. This scenario is compared against a control run (CTRL), where snow thermal conductivity is determined as a prognostic function of snow density. In the second set of experiments, high (SC-HI) and low (SC-LO) thermal conductivity values for snow are prescribed, based on upper and lower observed limits. These two scenarios are used to envelop model sensitivity to the range of realistic observed thermal conductivities. In both sets of experiments, the high conductivity/low insulation cases show increased heat exchange, with anomalous heat fluxes from the soil to the atmosphere during the winter and from the atmosphere to the soil during the summer. The increase in surface heat exchange leads to soil cooling of up to 20 K in the winter, anomalies that persist (though damped) into the summer season. The heat exchange also drives an asymmetric seasonal response in near-surface air temperatures, with boreal winter anomalies of +6 K and boreal summer anomalies of −2 K. On an annual basis there is a net loss of heat from the soil and increases in ground ice, leading to reductions in infiltration, evapotranspiration, and photosynthesis. Our results show land surface processes and the surface climate within CAM3–CLM3 are sensitive to the treatment of snow thermal conductivity.  相似文献   
88.
Incorporating organic soil into a global climate model   总被引:3,自引:1,他引:2  
Organic matter significantly alters a soil’s thermal and hydraulic properties but is not typically included in land-surface schemes used in global climate models. This omission has consequences for ground thermal and moisture regimes, particularly in the high-latitudes where soil carbon content is generally high. Global soil carbon data is used to build a geographically distributed, profiled soil carbon density dataset for the Community Land Model (CLM). CLM parameterizations for soil thermal and hydraulic properties are modified to accommodate both mineral and organic soil matter. Offline simulations including organic soil are characterized by cooler annual mean soil temperatures (up to ∼2.5°C cooler for regions of high soil carbon content). Cooling is strong in summer due to modulation of early and mid-summer soil heat flux. Winter temperatures are slightly warmer as organic soils do not cool as efficiently during fall and winter. High porosity and hydraulic conductivity of organic soil leads to a wetter soil column but with comparatively low surface layer saturation levels and correspondingly low soil evaporation. When CLM is coupled to the Community Atmosphere Model, the reduced latent heat flux drives deeper boundary layers, associated reductions in low cloud fraction, and warmer summer air temperatures in the Arctic. Lastly, the insulative properties of organic soil reduce interannual soil temperature variability, but only marginally. This result suggests that, although the mean soil temperature cooling will delay the simulated date at which frozen soil begins to thaw, organic matter may provide only limited insulation from surface warming.  相似文献   
89.
Deep subpermafrost aquifers are highly climate-dependent, with the permafrost as an aquitard preventing groundwater recharge and discharge. A study from the high-arctic island of Spitsbergen, Svalbard, shows that during a glacial to interglacial phase, both the permafrost and the glacier regime will respond to climatic changes, and a glacier-fed groundwater flow system will vary accordingly. A full glaciation results in the melting of permafrost, and groundwater can flow through pores and fracture systems in the rocks and sediments below the temperate zones of glaciers. These groundwater flow systems will mainly be localized to fjords and valleys and form low-lying terrestrial springs when the relative sea level drops during deglaciation due to glacio-isostatic rise. During an interglaciation, permafrost develops and thickens and the groundwater recharge and discharge areas will thereby be gradually reduced to a minimum reached at the warmest part of an interglaciation. An already frozen spring system cannot reopen before the permafrost melts. Only groundwater springs related to permanently warm-based glacial ice will persist into the next glaciation. During a new glaciation, flow systems that terminated during the previous interglaciation may become revitalized if overridden by warm-based ice causing permafrost thawing.  相似文献   
90.

Differences in mean annual air temperature between the Younger Dryas period and today were estimated at the fronts of 32 relict rockglaciers in the Err-Julier area, eastern Swiss Alps. The analyses were based on a case-by-case calculation of direct incoming solar radiation and mean annual air temperature using a digital elevation model (DEM) and meteo data of recent years. Our results suggest that mean annual air temperature during the Younger Dryas was lowered by c. 3C to 4C, and that the lower limit of permafrost occurrence was depressed considerably more than glacier equilibrium lines. This indicates strongly reduced precipitation (30% to 40% reduction) and much larger abundance of mountain permafrost at that time. A model simulation of the corresponding spatial permafrost distribution during the Younger Dryas indicates that glaciers in the study area were mostly surrounded by permafrost at that time and probably had a polythermal structure of englacial temperatures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号